Photonics Research, Volume. 10, Issue 4, 1011(2022)

Regenerated polymer optical fiber Bragg gratings with thermal treatment for high temperature measurements

Dinusha Serandi Gunawardena1,2,3、*, Xin Cheng1,2,4、*, Jingxian Cui1,2, Geraldi Edbert1, Linyue Lu1,2, Yuk Ting Ho1, and Hwa-Yaw Tam1,2
Author Affiliations
  • 1Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
  • 2Photonics Research Institute, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
  • 3e-mail: dinusha.gunawardena@polyu.edu.hk
  • 4e-mail: eechengx@polyu.edu.hk
  • show less
    References(33)

    [1] J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, S. T. Boles. Ultra-fast polymer optical fibre Bragg grating inscription for medical devices. Light Sci. Appl., 7, 17161(2018).

    [2] S. Koyama, Y. Haseda, H. Ishizawa, F. Okazaki, J. Bonefacino, H.-Y. Tam. Measurement of pulsation strain at the fingertip using a plastic FBG sensor. IEEE Sens. J., 21, 21537-21545(2021).

    [3] C. Broadway, R. Min, A. G. Leal-Junior, C. Marques, C. Caucheteur. Toward commercial polymer fiber Bragg grating sensors: review and applications. J. Lightwave Technol., 37, 2605-2615(2019).

    [4] C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, D. J. Webb. Fast Bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms. Sensors, 17, 891(2017).

    [5] A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, O. Bang. Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors. Opt. Mater. Express, 6, 649-659(2016).

    [6] A. Theodosiou, K. Kalli. Recent trends and advances of fibre Bragg grating sensors in CYTOP polymer optical fibres. Opt. Fiber Technol., 54, 102079(2020).

    [7] X. Cheng, J. Bonefacino, B. O. Guan, H. Y. Tam. All-polymer fiber-optic pH sensor. Opt. Express, 26, 14610-14616(2018).

    [8] I.-L. Bundalo, K. Nielsen, C. Markos, O. Bang. Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes. Opt. Express, 22, 5270-5276(2014).

    [9] D. Sáez-Rodríguez, K. Nielsen, O. Bang, D. J. Webb. Photosensitivity mechanism of undoped poly(methyl methacrylate) under UV radiation at 325 nm and its spatial resolution limit. Opt. Lett., 39, 3421-3424(2014).

    [10] C. Wochnowski, S. Metev, G. Sepold. UV-laser-assisted modification of the optical properties of polymethylmethacrylate. Appl. Surf. Sci., 154, 706-711(2000).

    [11] R. Oliveira, L. Bilro, R. Nogueira. Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds. Opt. Express, 23, 10181-10187(2015).

    [12] J. Bonefacino, X. Cheng, C.-F. J. Pun, S. T. Boles, H.-Y. Tam. Impact of high UV fluences on the mechanical and sensing properties of polymer optical fibers for high strain measurements. Opt. Express, 28, 1158-1167(2020).

    [13] X. Cheng, D. Gunawardena, C. F. Pun, J. Bonefacino, H. Y. Tam. Single nanosecond-pulse production of polymeric fiber Bragg gratings for biomedical applications. Opt. Express, 28, 33573-33583(2020).

    [14] J. L. Dinerman, R. D. Berger, H. Calkins. Temperature monitoring during radiofrequency ablation. J. Cardiovasc. Electrophysiol., 7, 163-173(1996).

    [15] M. Zaltieri, C. Massaroni, F. M. Cauti, E. Schena. Techniques for temperature monitoring of myocardial tissue undergoing radiofrequency ablation treatments: an overview. Sensors, 21, 1453(2021).

    [16] C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, O. Bang. High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees. Opt. Express, 21, 4758-4765(2013).

    [17] G. Woyessa, H. K. Rasmussen, O. Bang. Zeonex–a route towards low loss humidity insensitive single-mode step-index polymer optical fibre. Opt. Fiber Technol., 57, 102231(2020).

    [18] K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, M. C. Large. Thermal response of Bragg gratings in PMMA microstructured optical fibers. Opt. Express, 15, 8844-8850(2007).

    [19] S. Bandyopadhyay, J. Canning, M. Stevenson, K. Cook. Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm. Opt. Lett., 33, 1917-1919(2008).

    [20] D. S. Gunawardena, O. kit Law, Z. Liu, X. Zhong, Y.-T. Ho, H.-Y. Tam. Resurgent regenerated fiber Bragg gratings and thermal annealing techniques for ultra-high temperature sensing beyond 1400°C. Opt. Express, 28, 10595-10608(2020).

    [21] J. Canning. Regeneration, regenerated gratings and composite glass properties: the implications for high temperature micro and nano milling and optical sensing. Measurement, 79, 236-249(2016).

    [22] P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, K. Krebber. Molecular alignment relaxation in polymer optical fibers for sensing applications. Opt. Fiber Technol., 28, 11-17(2016).

    [23] W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, O. Bang. Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings. Opt. Commun., 284, 176-182(2011).

    [24] A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, D. J. Webb. Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity. Opt. Fiber Technol., 36, 68-74(2017).

    [25] G. Woyessa, K. Nielsen, A. Stefani, C. Markos, O. Bang. Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor. Opt. Express, 24, 1206-1213(2016).

    [26] G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, O. Bang. Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing. Opt. Mater. Express, 7, 286-295(2017).

    [27] S. Lerouge. Sterilisation and cleaning of metallic biomaterials. Metals for Biomedical Devices, 303-326(2010).

    [28] G. Woyessa, A. Fasano, C. Markos, H. K. Rasmussen, O. Bang. Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing. IEEE Photon. Technol. Lett., 29, 575-578(2017).

    [29] M. Yamazaki. Industrialization and application development of cyclo-olefin polymer. J. Mol. Catal. A Chem., 213, 81-87(2004).

    [30] J. Forsyth, J. M. Pereña, R. Benavente, E. Pérez, I. Tritto, L. Boggioni, H. H. Brintzinger. Influence of the polymer microstructure on the thermal properties of cycloolefin copolymers with high norbornene contents. Macromol. Chem. Phys., 202, 614-620(2001).

    [31] A. A. Leal, J. P. Best, D. Rentsch, J. Michler, R. Hufenus. Spectroscopic elucidation of structure-property relations in filaments melt-spun from amorphous polymers. Eur. Polym. J., 89, 78-87(2017).

    [32] M. Glotin, L. Mandelkern. A Raman spectroscopic study of the morphological structure of the polyethylenes. Colloid Polym. Sci., 260, 182-192(1982).

    [33] R. J. Young. Monitoring deformation processes in high-performance fibres using Raman spectroscopy. J. Text. Inst., 86, 360-381(1995).

    Tools

    Get Citation

    Copy Citation Text

    Dinusha Serandi Gunawardena, Xin Cheng, Jingxian Cui, Geraldi Edbert, Linyue Lu, Yuk Ting Ho, Hwa-Yaw Tam, "Regenerated polymer optical fiber Bragg gratings with thermal treatment for high temperature measurements," Photonics Res. 10, 1011 (2022)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation and Measurements

    Received: Jan. 13, 2022

    Accepted: Feb. 21, 2022

    Published Online: Apr. 26, 2022

    The Author Email: Dinusha Serandi Gunawardena (dinusha.gunawardena@polyu.edu.hk), Xin Cheng (eechengx@polyu.edu.hk)

    DOI:10.1364/PRJ.453683

    Topics