Chinese Optics, Volume. 15, Issue 1, 34(2022)

Nighttime image dehazing with a new light segmentation method and a linear image depth estimation model

Jian-wei LV1,2, Feng QIAN1, Hao-nan HAN1,2, and Bao ZHANG1、*
Author Affiliations
  • 1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(30)

    [1] LIU K, BI D Y, WANG SH P, . Single image dehazing based on sparse feature extraction[J]. Acta Optica Sinica, 38, 0310001(2018).

    [2] HAN H N, QIAN F, LV J W, . Aerial image dehazing using improved dark channel prior[J]. Optics and Precision Engineering, 28, 1387-1394(2020).

    [3] DENG L. Adaptive image dehazing for bright areas based on global dark channel prior[J]. Optics and Precision Engineering, 24, 892-901(2016).

    [4] ANCUTI C O, ANCUTI C, DE VLEESCHOUWER C, et al. Color channel transfer for image dehazing[J]. IEEE Signal Processing Letters, 26, 1413-1417(2019).

    [5] LI M D, LIU J Y, YANG W H, et al. Structure-revealing low-light image enhancement via robust retinex model[J]. IEEE Transactions on Image Processing, 27, 2828-2841(2018).

    [6] [6] NARASIMHAN S G, NAYAR S K. Shedding light on the weather[C]. Proceedings of 2013 IEEE Computer Society Conference on Computer Vision Pattern Recognition, IEEE, 2003.

    [7] HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 2341-2353(2011).

    [8] [8] TAN R T. Visibility in bad weather from a single image[C]. Proceedings of 2008 IEEE Conference on Computer Vision Pattern Recognition, IEEE, 2008.

    [9] ANCUTI C O, ANCUTI C. Single image dehazing by multi-scale fusion[J]. IEEE Transactions on Image Processing, 22, 3271-3282(2013).

    [10] [10] MENG G F, WANG Y, DUAN J Y. Efficient image dehazing with boundary constraint contextual regularization[C]. Proceedings of 2013 IEEE International Conference on Computer Vision, IEEE, 2013.

    [11] GUO X J, LI Y, LING H B. LIME: low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 26, 982-993(2017).

    [12] [12] PEI S C, LEE T Y. Nighttime haze removal using col transfer preprocessing dark channel pri[C]. Proceedings of 2012 19th IEEE International Conference on Image Processing, IEEE, 2012.

    [13] [13] ZHANG J, CAO Y, WANG Z F. Nighttime haze removal based on a new imaging model[C]. Proceedings of 2014 IEEE International Conference on Image Processing, IEEE, 2014.

    [14] [14] LI Y, TAN R T, BROWN M S. Nighttime haze removal with glow multiple light cols[C]. Proceedings of 2015 IEEE International Conference on Computer Vision, IEEE, 2015.

    [15] [15] LI Y, BROWN M S. Single image layer separation using relative smoothness[C]. Proceedings of 2014 IEEE Conference on Computer Vision Pattern Recognition, IEEE, 2014.

    [16] YANG A P, BAI H H. Nighttime image defogging based on the theory of Retinex and dark channel prior[J]. Laser & Optoelectronics Progress, 54, 041002(2017).

    [17] [17] ZHANG J, CAO Y, FANG SH, et al.. Fast haze removal f nighttime image using maximum reflectance pri[C]. Proceedings of 2017 IEEE Conference on Computer Vision Pattern Recognition, IEEE, 2017.

    [18] YU T, SONG K, MIAO P, et al. Nighttime single image dehazing via pixel-wise alpha blending[J]. IEEE Access, 7, 114619-114630(2019).

    [19] YANG M M, LIU J CH, LI ZH G. Superpixel-based single nighttime image haze removal[J]. IEEE Transactions on Multimedia, 20, 3008-3018(2018).

    [20] [20] XU L, ZHENG SH CH, JIA J Y. Unnatural L0 sparse representation f natural image deblurring[C]. Proceedings of 2013 IEEE Conference on Computer Vision Pattern Recognition, IEEE, 2013.

    [21] BUCHSBAUM G. A spatial processor model for object colour perception[J]. Journal of the Franklin Institute, 310, 1-26(1980).

    [22] GAO C, WANG Z, XU Y, et al. The von kries chromatic adaptation transform and its generalization[J]. Chinese Optics Letters, 18131, 6(2020).

    [23] LAND E H. The retinex theory of color vision[J]. Scientific American, 237, 108-128(1978).

    [24] [24] HE K M, SUN J, TANG X O. Guided image filtering[C]. Proceedings of the 11th European Conference on Computer Vision, Springer, 2010.

    [25] WANG SH H, ZHENG J, HU H M, et al. Naturalness preserved enhancement algorithm for non-uniform illumination images[J]. IEEE Transactions on Image Processing, 22, 3538-3548(2013).

    [26] ZHU Q S, MAI J M, SHAO L. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 24, 3522-3533(2015).

    [27] LOU W H, LI Y J, YANG G W, et al. Integrating haze density features for fast nighttime image dehazing[J]. IEEE Access, 8, 113318-113330(2020).

    [28] [28] ANCUTI C, ANCUTI C O, DE VLEESCHOUWER C. DHAZY: a dataset to evaluate quantitatively dehazing algithms[C]. Proceedings of 2016 IEEE International Conference on Image Processing, IEEE, 2016.

    [29] MARQUARDT D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 11, 431-441(1963).

    [30] TRIPATHI A K, MUKHOPADHYAY S. Removal of fog from images: a review[J]. IETE Technical Review, 29, 148-156(2012).

    CLP Journals

    [1] Peng-cheng FAN, Xue-zhai JIANG, De-qiang Tian, Guang-qiang Zhang. Magnetic field sensor utilizing U-Shaped Cavity based on in-fiber Mach–Zehnder interferometer[J]. Chinese Optics, 2024, 17(3): 674

    Tools

    Get Citation

    Copy Citation Text

    Jian-wei LV, Feng QIAN, Hao-nan HAN, Bao ZHANG. Nighttime image dehazing with a new light segmentation method and a linear image depth estimation model[J]. Chinese Optics, 2022, 15(1): 34

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Original Article

    Received: May. 24, 2021

    Accepted: --

    Published Online: Jul. 27, 2022

    The Author Email:

    DOI:10.37188/CO.2021-0114

    Topics