Chinese Journal of Lasers, Volume. 49, Issue 22, 2200001(2022)
Ultrafast Dynamics of Femtosecond Laser Interaction with Materials
[1] Wang G B. Photonic manufacturing science & technology: overview and outlook[J]. Journal of Mechanical Engineering, 47, 157-169(2011).
[2] Hong X P, Kim J, Shi S F et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures[J]. Nature Nanotechnology, 9, 682-686(2014).
[3] Zhang H, Li C, Bevillon E et al. Ultrafast destructuring of laser-irradiated tungsten: thermal or nonthermal process[J]. Physical Review B, 94, 224103(2016).
[4] Man M K L, Margiolakis A, Deckoff-Jones S et al. Imaging the motion of electrons across semiconductor heterojunctions[J]. Nature Nanotechnology, 12, 36-40(2017).
[5] Rehman Z U, Janulewicz K A. Structural transformations in femtosecond laser-processed n-type 4H-SiC[J]. Applied Surface Science, 385, 1-8(2016).
[6] Velpula P K, Bhuyan M K, Courvoisier F et al. Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring[J]. Laser & Photonics Reviews, 10, 230-244(2016).
[7] Horstmann J G, Böckmann H, Wit B et al. Coherent control of a surface structural phase transition[J]. Nature, 583, 232-236(2020).
[8] Gao H, Hu Y W, Xuan Y et al. Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures[J]. Science, 346, 1352-1356(2014).
[9] Hu H F, Wang X L, Zhai H C et al. Generation of multiple stress waves in silica glass in high fluence femtosecond laser ablation[J]. Applied Physics Letters, 97, 061117(2010).
[10] Cheng C R, Xu X F. Mechanisms of decomposition of metal during femtosecond laser ablation[J]. Physical Review B, 72, 165415(2005).
[11] Vorobyev A, Guo C[M]. Nanomaterials: processing and characterization with lasers, 203-218(2012).
[12] Mao S S, Quéré F, Guizard S et al. Dynamics of femtosecond laser interactions with dielectrics[J]. Applied Physics A, 79, 1695-1709(2004).
[13] Balling P, Schou J. Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films[J]. Reports on Progress in Physics, 76, 036502(2013).
[14] Jiang L, Wang A D, Li B et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application[J]. Light: Science & Applications, 7, 17134(2018).
[15] Zewail A H. Laser femtochemistry[J]. Science, 242, 1645-1653(1988).
[16] Pan C J, Wang Q S, Sun J Y et al. Dynamics and its modulation of laser-induced plasma and shockwave in femtosecond double-pulse ablation of silicon[J]. Applied Physics Express, 13, 012006(2020).
[17] Wang F F, Pan C J, Sun J Y et al. Direct observation of structure-assisted filament splitting during ultrafast multiple-pulse laser ablation[J]. Optics Express, 27, 10050-10057(2019).
[18] Garcia-Lechuga M, Haahr-Lillevang L, Siegel J et al. Simultaneous time-space resolved reflectivity and interferometric measurements of dielectrics excited with femtosecond laser pulses[J]. Physical Review B, 95, 214114(2017).
[19] Garcia-Lechuga M, Puerto D, Fuentes-Edfuf Y et al. Ultrafast moving-spot microscopy: birth and growth of laser-induced periodic surface structures[J]. ACS Photonics, 3, 1961-1967(2016).
[20] Hernandez-Rueda J, Puerto D, Siegel J et al. Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz[J]. Applied Surface Science, 258, 9389-9393(2012).
[21] Mouskeftaras A, Guizard S, Fedorov N et al. Mechanisms of femtosecond laser ablation of dielectrics revealed by double pump-probe experiment[J]. Applied Physics A, 110, 709-715(2013).
[22] Veysset D, Maznev A A, Pezeril T et al. Interferometric analysis of laser-driven cylindrically focusing shock waves in a thin liquid layer[J]. Scientific Reports, 6, 24(2016).
[23] Ahamer C M, Riepl K M, Huber N et al. Femtosecond laser-induced breakdown spectroscopy: elemental imaging of thin films with high spatial resolution[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 136, 56-65(2017).
[24] Penczak J, Kupfer R, Bar I et al. The role of plasma shielding in collinear double-pulse femtosecond laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 97, 34-41(2014).
[25] Boueri M, Baudelet M, Yu J et al. Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer[J]. Applied Surface Science, 255, 9566-9571(2009).
[26] Bose R Y, Sun J Y, Khan J I et al. Real-space visualization of energy loss and carrier diffusion in a semiconductor nanowire array using 4D electron microscopy[J]. Advanced Materials, 28, 5106-5111(2016).
[27] Sun J Y, Yu W L, Usman A et al. Generation of multiple excitons in Ag2S quantum dots: single high-energy versus multiple-photon excitation[J]. The Journal of Physical Chemistry Letters, 5, 659-665(2014).
[28] Sun J Y, Adhikari A, Shaheen B S et al. Mapping carrier dynamics on material surfaces in space and time using scanning ultrafast electron microscopy[J]. The Journal of Physical Chemistry Letters, 7, 985-994(2016).
[29] Guo Z, Wan Y, Yang M J et al. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy[J]. Science, 356, 59-62(2017).
[30] Min W, Lu S J, Chong S S et al. Imaging chromophores with undetectable fluorescence by stimulated emission microscopy[J]. Nature, 461, 1105-1109(2009).
[31] Huang L B, Hartland G V, Chu L Q et al. Ultrafast transient absorption microscopy studies of carrier dynamics in epitaxial graphene[J]. Nano Letters, 10, 1308-1313(2010).
[32] Guo B S, Sun J Y, Lu Y F et al. Ultrafast dynamics observation during femtosecond laser-material interaction[J]. International Journal of Extreme Manufacturing, 1, 032004(2019).
[33] Nakagawa K, Iwasaki A, Oishi Y et al. Sequentially timed all-optical mapping photography (STAMP)[J]. Nature Photonics, 8, 695-700(2014).
[34] Li Z Y, Zgadzaj R, Wang X M et al. Single-shot tomographic movies of evolving light-velocity objects[J]. Nature Communications, 5, 3085(2014).
[35] Wang X F, Yan L H, Si J H et al. High-frame-rate observation of single femtosecond laser pulse propagation in fused silica using an echelon and optical polarigraphy technique[J]. Applied Optics, 53, 8395-8399(2014).
[36] Sundaram S K, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nature Materials, 1, 217-224(2002).
[37] Jiang L, Li L S, Wang S M. Microscopic energy transport through photon-electron-phonon interactions during ultrashort laser ablation of wide bandgap materials: photon absorption[J]. Chinese Journal of Lasers, 36, 779-789(2009).
[38] Li L S, Jiang L, Tsai H et al. Microscopic energy transport through photon-electronphonon interactions during ultrashort laser ablation of wide bandgap materials: phase change[J]. Chinese Journal of Lasers, 36, 1029-1036(2009).
[39] Chimier B, Utéza O, Sanner N et al. Damage and ablation thresholds of fused-silica in femtosecond regime[J]. Physical Review B, 84, 094104(2011).
[40] Goodarzi R, Razzaghi D, Hajiesmaeilbaigi F. Linear chirping effects on heating of silicon surface after interaction with femtosecond laser pulses[J]. Optik, 202, 163480(2020).
[41] Ageev E I, Bychenkov V Y, Ionin A A et al. Double-pulse femtosecond laser peening of aluminum alloy AA5038: effect of inter-pulse delay on transient optical plume emission and final surface micro-hardness[J]. Applied Physics Letters, 109, 211902(2016).
[42] Hosokawa Y, Adachi H, Yoshimura M et al. Femtosecond laser-induced crystallization of 4-(dimethylamino)-N-methyl-4-stilbazolium tosylate[J]. Crystal Growth & Design, 5, 861-863(2005).
[43] Petrakakis E, Tsibidis G D, Stratakis E. Modelling of the ultrafast dynamics and surface plasmon properties of silicon upon irradiation with mid-IR femtosecond laser pulses[J]. Physical Review B, 99, 195201(2019).
[44] Sun M Y, Eppelt U, Schulz W et al. Role of thermal ionization in internal modification of bulk borosilicate glass with picosecond laser pulses at high repetition rates[J]. Optical Materials Express, 3, 1716-1726(2013).
[45] Bashir S, Rafique M S, Husinsky W. Identification of ultra-fast electronic and thermal processes during femtosecond laser ablation of Si[J]. Applied Physics A, 109, 421-429(2012).
[46] Zhao X, Shin Y C. Coulomb explosion and early plasma generation during femtosecond laser ablation of silicon at high laser fluence[J]. Journal of Physics D: Applied Physics, 46, 335501(2013).
[47] Rethfeld B, Kaiser A, Vicanek M et al. Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation[J]. Physical Review B, 65, 214303(2002).
[48] Tan D Z, Sharafudeen K N, Yue Y Z et al. Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications[J]. Progress in Materials Science, 76, 154-228(2016).
[49] Keldysh L V. Ionization in the field of a strong electromagnetic wave[J]. Soviet Physics JETP, 20, 1307-1314(1965).
[50] Mao X L, Mao S S, Russo R E. Imaging femtosecond laser-induced electronic excitation in glass[J]. Applied Physics Letters, 82, 697-699(2003).
[51] Jiang L, Tsai H L. Plasma modeling for ultrashort pulse laser ablation of dielectrics[J]. Journal of Applied Physics, 100, 023116(2006).
[52] Perelomov A M, Popov V S, Terent’ev M V. Ionization of atoms in an alternating electric field[J]. Soviet Physics JETP, 23, 924-934(1966).
[53] Ammosov M V, Delone N B, Krainov V P. Tunnel ionization of complex atoms and atomic ions in electromagnetic field[J]. Proceedings of SPIE, 0664, 138-141(1986).
[54] Bonse J, Baudach S, Krüger J et al. Femtosecond laser ablation of silicon-modification thresholds and morphology[J]. Applied Physics A, 74, 19-25(2002).
[55] Juodkazis S, Nishimura K, Misawa H et al. Control over the crystalline state of sapphire[J]. Advanced Materials, 18, 1361-1364(2006).
[56] Vailionis A, Gamaly E G, Mizeikis V et al. Evidence of superdense aluminium synthesized by ultrafast microexplosion[J]. Nature Communications, 2, 445(2011).
[57] Stoian R, Rosenfeld A, Ashkenasi D et al. Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation[J]. Physical Review Letters, 88, 097603(2002).
[58] Bulgakova N M, Bulgakov A V, Zhukov V P et al. Charging and plasma effects under ultrashort pulsed laser ablation[J]. Proceedings of SPIE, 7005, 70050C(2008).
[59] Varel H, Wähmer M, Rosenfeld A et al. Femtosecond laser ablation of sapphire: time-of-flight analysis of ablation plume[J]. Applied Surface Science, 127/128/129, 128-133(1998).
[60] Wu C P, Zhigilei L V. Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations[J]. Applied Physics A, 114, 11-32(2014).
[61] Axente E, Noël S, Hermann J et al. Subpicosecond laser ablation of copper and fused silica: initiation threshold and plasma expansion[J]. Applied Surface Science, 255, 9734-9737(2009).
[62] Wang Q S, Jiang L, Sun J Y et al. Enhancing the expansion of a plasma shockwave by crater-induced laser refocusing in femtosecond laser ablation of fused silica[J]. Photonics Research, 5, 488-493(2017).
[63] Wang C[D]. First-principles calculations and their validations for ultrafast micro/nanofabrication based on electron dynamics control(2014).
[64] Rethfeld B, Ivanov D S, Garcia M E et al. Modelling ultrafast laser ablation[J]. Journal of Physics D: Applied Physics, 50, 193001(2017).
[65] Sun C, Vallée F, Acioli L H et al. Femtosecond-tunable measurement of electron thermalization in gold[J]. Physical Review B, 50, 15337-15348(1994).
[66] Pan C J[D]. Ultrafast dynamics of plasma and ablation mechanism during femtosecond laser fabrication(2021).
[67] Jiang L, Tsai H L. Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse[J]. International Journal of Heat and Mass Transfer, 48, 487-499(2005).
[68] Fabricius N, Hermes P, von der Linde D et al. Observation of superheating during picosecond laser melting[J]. Solid State Communications, 58, 239-242(1986).
[69] Rethfeld B, Sokolowski-Tinten K, von der Linde D et al. Ultrafast thermal melting of laser-excited solids by homogeneous nucleation[J]. Physical Review B, 65, 092103(2002).
[70] Shugaev M V, Wu C P, Armbruster O et al. Fundamentals of ultrafast laser-material interaction[J]. MRS Bulletin, 41, 960-968(2016).
[71] Bhat R, Bhanumurthy K, Roy S K. Processing of Al2O3/Al interpenetrating composites[J]. Transactions of the Indian Ceramic Society, 57, 134-136(1998).
[72] Zhang N, Zhu X N, Yang J J et al. Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum[J]. Physical Review Letters, 99, 167602(2007).
[73] Cheng J, Liu C S, Shang S et al. A review of ultrafast laser materials micromachining[J]. Optics & Laser Technology, 46, 88-102(2013).
[74] Wang Q S[D]. Multiscale observation and control of the dynamics of strong-field-induced plasma and shockwave in femtosecond laser fabrication(2019).
[75] Gengler R Y N, Badali D S, Zhang D F et al. Revealing the ultrafast process behind the photoreduction of graphene oxide[J]. Nature Communications, 4, 2560(2013).
[76] Wang H N, Zhang C J, Rana F. Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2[J]. Nano Letters, 15, 339-345(2015).
[77] Sun C K, Choi H K, Wang C A et al. Studies of carrier heating in InGaAs/AlGaAs strained-layer quantum well diode lasers using a multiple wavelength pump probe technique[J]. Applied Physics Letters, 62, 747-749(1993).
[78] Goulielmakis E, Loh Z H, Wirth A et al. Real-time observation of valence electron motion[J]. Nature, 466, 739-743(2010).
[79] Hebling J, Hoffmann M C, Hwang H Y et al. Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump-terahertz probe measurements[J]. Physical Review B, 81, 035201(2010).
[80] Nishitani J, Nagashima T, Lippmaa M et al. Optical pump-terahertz probe analysis of long-lived d-electrons and relaxation to self-trapped exciton states in MnO[J]. Applied Physics Letters, 108, 162101(2016).
[81] He C, Zhu L P, Zhao Q Y et al. Competition between free carriers and excitons mediated by defects observed in layered WSe2 crystal with time-resolved terahertz spectroscopy[J]. Advanced Optical Materials, 6, 1800290(2018).
[82] Zewail A H. Femtochemistry: atomic-scale dynamics of the chemical bond[J]. The Journal of Physical Chemistry A, 104, 5660-5694(2000).
[83] Downer M C, Fork R L, Shank C V. Femtosecond imaging of melting and evaporation at a photoexcited silicon surface[J]. Journal of the Optical Society of America B, 2, 595-599(1985).
[84] Martin P, Guizard S, Daguzan P et al. Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals[J]. Physical Review B, 55, 5799-5810(1997).
[85] Balciunas T, Melninkaitis A, Tamosauskas G et al. Time-resolved off-axis digital holography for characterization of ultrafast phenomena in water[J]. Optics Letters, 33, 58-60(2008).
[86] Mingareev I, Horn A. Time-resolved investigations of plasma and melt ejections in metals by pump-probe shadowgrpahy[J]. Applied Physics A, 92, 917-920(2008).
[87] Fang R R, Vorobyev A, Guo C L. Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals[J]. Light: Science & Applications, 6, e16256(2017).
[88] Wang M M, Jiang L, Wang S M et al. Multiscale visualization of colloidal particle lens array mediated plasma dynamics for dielectric nanoparticle enhanced femtosecond laser-induced breakdown spectroscopy[J]. Analytical Chemistry, 91, 9952-9961(2019).
[89] Grumstrup E M, Gabriel M M, Cating E E M et al. Pump-probe microscopy: visualization and spectroscopy of ultrafast dynamics at the nanoscale[J]. Chemical Physics, 458, 30-40(2015).
[90] Sciamanna M, Shore K A. Physics and applications of laser diode chaos[J]. Nature Photonics, 9, 151-162(2015).
[91] Solli D R, Ropers C, Koonath P et al. Optical rogue waves[J]. Nature, 450, 1054-1057(2007).
[92] Poulin P R, Nelson K A. Irreversible organic crystalline chemistry monitored in real time[J]. Science, 313, 1756-1760(2006).
[93] Kodama R, Norreys P A, Mima K et al. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition[J]. Nature, 412, 798-802(2001).
[94] Bradley D K, Bell P M, Kilkenny J D et al. High-speed gated X-ray imaging for ICF target experiments (invited)[J]. Review of Scientific Instruments, 63, 4813-4817(1992).
[95] Chowdhury I H, Xu X F, Weiner A M. Ultrafast double-pulse ablation of fused silica[J]. Applied Physics Letters, 86, 151110(2005).
[96] Temnov V V, Sokolowski-Tinten K, Zhou P et al. Multiphoton ionization in dielectrics: comparison of circular and linear polarization[J]. Physical Review Letters, 97, 237403(2006).
[97] Jia T Q, Chen H X, Huang M et al. Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals[J]. Physical Review B, 73, 054105(2006).
[98] Grojo D, Gertsvolf M, Lei S et al. Exciton-seeded multiphoton ionization in bulk SiO2[J]. Physical Review B, 81, 212301(2010).
[99] Audebert P, Daguzan P, Santos A D et al. Space-time observation of an electron gas in SiO2[J]. Physical Review Letters, 73, 1990-1993(1994).
[100] Sun Q, Jiang H B, Liu Y et al. Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica[J]. Optics Letters, 30, 320-322(2005).
[101] Pan C J, Jiang L, Wang Q S et al. Temporal-spatial measurement of electron relaxation time in femtosecond laser induced plasma using two-color pump-probe imaging technique[J]. Applied Physics Letters, 112, 191101(2018).
[102] Yu Y W, Jiang L, Cao Q et al. Ultrafast imaging the light-speed propagation of a focused femtosecond laser pulse in air and its ionized electron dynamics and plasma-induced pulse reshaping[J]. Applied Physics A, 122, 205(2016).
[103] Yu Y W, Jiang L, Cao Q et al. Pump-probe imaging of the fs-ps-ns dynamics during femtosecond laser Bessel beam drilling in PMMA[J]. Optics Express, 23, 32728-32735(2015).
[104] Siegel J, Puerto D, Gawelda W et al. Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation[J]. Applied Physics Letters, 91, 082902(2007).
[105] Puerto D, Gawelda W, Siegel J et al. Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses[J]. Applied Physics A, 92, 803-808(2008).
[106] Mouskeftaras A, Rode A V, Clady R et al. Self-limited underdense microplasmas in bulk silicon induced by ultrashort laser pulses[J]. Applied Physics Letters, 105, 191103(2014).
[107] Chanal M, Fedorov V Y, Chambonneau M et al. Crossing the threshold of ultrafast laser writing in bulk silicon[J]. Nature Communications, 8, 773(2017).
[108] Bonse J, Bachelier G, Siegel J et al. Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium[J]. Physical Review B, 74, 134106(2006).
[109] Heins A, Guo C L. Shock-induced concentric rings in femtosecond laser ablation of glass[J]. Journal of Applied Physics, 113, 223506(2013).
[110] Rapp S, Domke M, Schmidt M et al. Physical mechanisms during fs laser ablation of Thin SiO2 films[J]. Physics Procedia, 41, 734-740(2013).
[111] Garcia-Lechuga M, Siegel J, Hernandez-Rueda J et al. Imaging the ultrafast Kerr effect, free carrier generation, relaxation and ablation dynamics of lithium niobate irradiated with femtosecond laser pulses[J]. Journal of Applied Physics, 116, 113502(2014).
[112] Pan C J, Jiang L, Sun J Y et al. Ultrafast optical response and ablation mechanisms of molybdenum disulfide under intense femtosecond laser irradiation[J]. Light: Science & Applications, 9, 80(2020).
[113] Wang F F, Jiang L, Sun J Y et al. One-step fabrication method of GaN films for internal quantum efficiency enhancement and their ultrafast mechanism investigation[J]. ACS Applied Materials & Interfaces, 13, 7688-7697(2021).
[114] Zeng X Z, Mao X L, Wen S B et al. Energy deposition and shock wave propagation during pulsed laser ablation in fused silica cavities[J]. Journal of Physics D: Applied Physics, 37, 1132-1136(2004).
[115] Zeng X, Mao X L, Greif R et al. Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon[J]. Applied Physics A, 80, 237-241(2005).
[116] Wu Z H, Zhang N, Wang M W et al. Femtosecond laser ablation of silicon in air and vacuum[J]. Chinese Optics Letters, 9, 093201(2011).
[117] Wu Z H, Zhu X N, Zhang N. Time-resolved shadowgraphic study of femtosecond laser ablation of aluminum under different ambient air pressures[J]. Journal of Applied Physics, 109, 053113(2011).
[118] Zhang H, Zhang F T, Du X et al. Influence of laser-induced air breakdown on femtosecond laser ablation of aluminum[J]. Optics Express, 23, 1370-1376(2015).
[119] Hu H F, Liu T G, Zhai H C. Comparison of femtosecond laser ablation of aluminum in water and in air by time-resolved optical diagnosis[J]. Optics Express, 23, 628-635(2015).
[120] Wang Q S, Jiang L, Sun J Y et al. Structure-mediated excitation of air plasma and silicon plasma expansion in femtosecond laser pulses ablation[J]. Research, 2018, 5709748(2018).
[121] Zhao M J, Hu J, Jiang L et al. Controllable high-throughput high-quality femtosecond laser-enhanced chemical etching by temporal pulse shaping based on electron density control[J]. Scientific Reports, 5, 13202(2015).
[122] Wang A D, Jiang L, Li X W et al. Mask-free patterning of high-conductivity metal nanowires in open air by spatially modulated femtosecond laser pulses[J]. Advanced Materials, 27, 6238-6243(2015).
[123] Xie Q, Li X W, Jiang L et al. High-aspect-ratio, high-quality microdrilling by electron density control using a femtosecond laser Bessel beam[J]. Applied Physics A, 122, 136(2016).
[124] Yuan Y J, Jiang L, Li X et al. Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication[J]. Nature Communications, 11, 6185(2020).
[125] Pan C J, Jiang L, Sun J Y et al. The temporal-spatial evolution of electron dynamics induced by femtosecond double pulses[J]. Japanese Journal of Applied Physics, 58, 030901(2019).
[126] Rapp S, Kaiser M, Schmidt M et al. Ultrafast pump-probe ellipsometry setup for the measurement of transient optical properties during laser ablation[J]. Optics Express, 24, 17572-17592(2016).
[127] Kumada T, Otobe T, Nishikino M et al. Dynamics of spallation during femtosecond laser ablation studied by time-resolved reflectivity with double pump pulses[J]. Applied Physics Letters, 108, 011102(2016).
[128] Wang G Y, Yu Y W, Jiang L et al. Cylindrical shockwave-induced compression mechanism in femtosecond laser Bessel pulse micro-drilling of PMMA[J]. Applied Physics Letters, 110, 161907(2017).
[129] Wang Z H, Zeng B, Li G H et al. Time-resolved shadowgraphs of transient plasma induced by spatiotemporally focused femtosecond laser pulses in fused silica glass[J]. Optics Letters, 40, 5726-5729(2015).
[130] Kammel R, Ackermann R, Thomas J et al. Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing[J]. Light: Science & Applications, 3, e169(2014).
Get Citation
Copy Citation Text
Xiyang Jiang, Feifei Wang, Wei Zhou, Liandong Yu. Ultrafast Dynamics of Femtosecond Laser Interaction with Materials[J]. Chinese Journal of Lasers, 2022, 49(22): 2200001
Category: reviews
Received: May. 25, 2022
Accepted: Jun. 27, 2022
Published Online: Nov. 2, 2022
The Author Email: Wang Feifei (wangfeifei0124@126.com)