Laser & Optoelectronics Progress, Volume. 61, Issue 22, 2215001(2024)

LSNFS: A Local Feature Descriptor Algorithm with High Discrimination and Strong Robustness

Senda Hong1,2, Haojie Cheng1,2, Chunxiao Xu1,2, Zhenxin Chen2, Jiajun Wang2, and Lingxiao Zhao2、*
Author Affiliations
  • 1School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui , China
  • 2Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215162, Jiangsu , China
  • show less
    Figures & Tables(17)
    Construction diagram of SNDS
    Effectiveness evaluation of AWNDA attribute partitioning strategy. (a) Visual analysis of the objective functionsin; (b) RPC performance evaluation of LSNFS descriptor using different partitioning strategies on the U3OR dataset
    Schematic diagrams of constructing LSNFS descriptor. (a) Key points and their local surface extraction; (b) LRA construction; (c) calculate 5 attribute values for each neighborhood point; (d) statistics on the distribution of attributes; (e) generation of sub histograms; (f) final histogram generation
    Parameter settings of the LSNFS descriptor (the larger solid marker indicates the selected parameter values). (a) Test results on B3R; (b) test results on U3OR
    Point cloud examples. (a) B3R dataset; (b) U3OR dataset; (c) U3M dataset; (d) QuLD dataset; (e) S3R dataset; (f) K3R dataset
    RPC performance evaluation of eight descriptors on the B3R dataset. (a) 0.3 mr Gaussian noise; (b) 0.5 mr Gaussian noise; (c) 1/4 mesh decimation ; (d) 1/8 mesh decimation; (e) 0.3mr Gaussian noise+1/4 mesh decimation; (f) 0.5 mr Gaussian noise+1/8 mesh decimation
    RPC performance evaluation of eight descriptors on U3M and U3OR datasets. (a) U3M dataset; (b) U3OR dataset
    RPC performance evaluation of eight descriptors on S3R and K3R datasets. (a) S3R dataset; (b) K3R dataset
    RPC performance evaluation of eight descriptors on QuLD dataset
    Time required for feature extraction of eight descriptors under different support radii
    Correct registration rate of 8 descriptors tested on U3M dataset
    Four object registration cases based on LSNFS descriptor on U3M dataset. (a) Chef; (b) Chicken; (c) T-rex; (d) Parasaurolophus
    Qualitative registration results based on LSNFS descriptor on 3DMatch, ETH, and TUM datasets. (a) (b) 3DMatch dataset; (c) (d) ETH dataset; (e) (f) TUM dataset
    • Table 1. Descriptor parameter settings

      View table

      Table 1. Descriptor parameter settings

      ConditionNrNhNWNDANαNβ
      Setting Nr2-202222
      Setting Nh52-20222
      Setting NWNDA552-2022
      Setting Nα55102-202
      Setting Nβ5510132-20
    • Table 2. Characteristics of six standard public datasets

      View table

      Table 2. Characteristics of six standard public datasets

      DatasetScannerChallengeQualityScenario#Model#Scene
      B3R28-29Cyberware 3030 MSGaussian noise,mesh decimationHighRetrieval66
      U3M30Minolta vivid 910OcclusionHighRegistration75
      U3OR31Minolta vivid 910Occlusion, clutterHighRecognition580
      QuLD32NextEnigneQcclusion, clutter,real noiseLowRecognition580
      S3R33SpaceTime StereoOcclusion, real noise, outliersLowRegistration57
      K3R33Microsoft KinectOcclusion, real noise, outliersLowRegistration69
    • Table 3. Parameter settings for eight descriptors

      View table

      Table 3. Parameter settings for eight descriptors

      DescriptorSupport radius /mrDimensionalityLength
      TOLDI10203×20×201200
      RoPS19203×3×3×5135
      MaSH21205×(10+8+10)140
      SDASS22205×5×15-30345
      SHOT27208×2×2×11352
      LFSH352015+10+530
      RCS36206×1272
      LSNFS205×5×10+5×13+5×15390
    • Table 4. Feature matching recall rates of different methods on the 3DMatch dataset

      View table

      Table 4. Feature matching recall rates of different methods on the 3DMatch dataset

      MethodKitchenHome1Home2Hotel1Hotel2Hotel3StudyMIT LabAverage
      3DSmoothNet1497.095.589.496.593.398.294.593.594.7
      SpinNet1599.298.196.199.697.1100.095.694.897.6
      MS-SVConv1699.699.494.299.199.0100.095.9100.098.4
      CGF4460.371.156.757.153.883.337.745.558.2
      PPF-Net4589.755.859.158.057.761.153.463.662.3
      PPF-FoldNet4678.776.361.568.171.294.462.062.371.8
      LSNFS88.191.384.789.686.292.485.884.387.8
    Tools

    Get Citation

    Copy Citation Text

    Senda Hong, Haojie Cheng, Chunxiao Xu, Zhenxin Chen, Jiajun Wang, Lingxiao Zhao. LSNFS: A Local Feature Descriptor Algorithm with High Discrimination and Strong Robustness[J]. Laser & Optoelectronics Progress, 2024, 61(22): 2215001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Feb. 5, 2024

    Accepted: Mar. 12, 2024

    Published Online: Nov. 19, 2024

    The Author Email: Lingxiao Zhao (hitic@sibet.ac.cn)

    DOI:10.3788/LOP240666

    CSTR:32186.14.LOP240666

    Topics