Infrared and Laser Engineering, Volume. 50, Issue 12, 20210735(2021)
Single-pixel complex amplitude imaging (Invited)
[1] Edgar M P, Gibson G M, Padgett, M J. Principles and prospects for single-pixel imaging[J]. Nature Photon, 13, 13-20(2019).
[2] Gibson G M, Johnson S D, Padgett M J. Single-pixel imaging 12 years on: A review[J]. Optics Express, 28, 28190-28208(2020).
[3] Wang Kaige, Cao Dezhong, Xiong Jun. Progress in correlated optics[J]. Physics, 37, 223-232(2008).
[4] Shapiro J H, Boyd R W. The physics of ghost imaging[J]. Quantum Information Processing, 11, 949-993(2012).
[5] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 52, R3429(1995).
[6] Strekalov D V, Sergienko A V, Klyshko D N, et al. Observation of two-photon "ghost" interference and diffraction[J]. Physical Review Letters, 74, 3600-3603(1995).
[7] Fonseca E J S, Ribeiro P H S, Padua S, et al. Quantum interference by a nonlocal double slit[J]. Physical Review A, 60, 1530-1533(1999).
[8] Bennink R S, Bentley S J, Boyd R W. "Two-Photon" coincidence imaging with a classical source[J]. Physical Review Letters, 89, 113601(2002).
[9] Gatti A, Brambilla E, Bache M, et al. Correlated imaging, quantum and classical[J]. Physical Review A, 70, 013802(2004).
[10] Gatti A, Brambilla E, Bache M, et al. Ghost imaging with thermal light: Comparing entanglement and classical correlation[J]. Physical Review Letters, 93, 093602(2004).
[11] Cheng J, Han S. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. Physical Review Letters, 92, 93903(2004).
[12] Cao D Z, Xiong J, Wang K. Geometrical optics in correlated imaging systems[J]. Physical Review A, 71, 013801(2005).
[13] Valencia A, Scarcelli G, D’Angelo M, et al. Two-photon imaging with thermal light[J]. Physical Review Letters, 94, 063601(2005).
[14] Ferri F, Magatti D, Gatti A, et al. High-resolution ghost image and ghost diffraction experiments with thermal light[J]. Physical Review Letters, 94, 183602(2005).
[15] Zhang D, Zhai Y H, Wu L A, et al. Correlated two-photon imaging with true thermal light[J]. Optics Letters, 30, 2354-2356(2005).
[16] Chen X H, Liu Q, Luo K H, et al. Lensless ghost imaging with true thermal light[J]. Optics Letters, 34, 695(2009).
[17] Cao D Z, Xiong J, Zhang S H, et al. Enhancing visibility and resolution in
[18] Chan K W C, O'Sullivan M N, Boyd R W. High-order thermal ghost imaging[J]. Optics Letters, 34, 3343-3345(2009).
[19] Zhang P, Gong W, Shen X, et al. Improving resolution by the second-order correlation of light fields[J]. Optics Letters, 34, 1222(2009).
[20] Erkmen B I, Shapiro J H. Signal-to-noise ratio of Gaussian-state ghost imaging[J]. Physical Review A, 79, 1-2(2009).
[21] Zhou Y, Simon J, Liu J, et al. Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime[J]. Physical Review A, 81, 1334-1342(2010).
[22] Chan K, O'Sullivan M N, Boyd R W. Optimization of thermal ghost imaging: High-order correlations vs. background subtraction[J]. Optics Express, 18, 5562-5573(2010).
[23] Chen X H, Agafonov I N, Luo K H. High-visibility, high-order lensless ghost imaging with thermal light[J]. Optics Letters, 35, 1166-1168(2010).
[24] [24] Karmakar S, Zhai Y H, Chen H, et al. The first ghost image using sun as a light source[C]Quantum Electronics Laser Science Conference, 2011: QFD3.
[25] Liu X F, Chen X H, Yao X R, et al. Lensless ghost imaging with sunlight[J]. Optics Letters, 39, 2314(2014).
[26] Gong W L, Zhao C Q, Yu H, et al. Three-dimensional ghost imaging lidar via sparsity constraint[J]. Scientific Reports, 6, 26133(2016).
[27] Wang Y L, Wang F R, Liu R F, et al. Sub-rayleigh resolution single-pixel imaging using Gaussian-and doughnut-spot illumination[J]. Optics Express, 27, 5973-5981(2019).
[28] Wang Y L, Zhou Y N, Wang S X, et al. Enhancement of spatial resolution of ghost imaging via localizing and thresholding[J]. Chinese Physics B, 28, 044202(2019).
[29] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 78, 061802(2008).
[30] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Applied Physics Letters, 95, 131110(2009).
[31] Sun B, Edgar M P, Bowman R, et al. 3 D computational imaging with single-pixel detectors[J]. Science, 340, 844-847(2013).
[32] Sun M J, Edgar M P, Gibson G M, et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature Communications, 7, 1-6(2016).
[33] Welsh S S, Edgar M P, Bowman R, et al. Fast full-color computational imaging with single-pixel detectors[J]. Optics Express, 21, 23068-23074(2013).
[34] Radwell N, Mitchell K J, Gibson G M, et al. Single-pixel infrared and visible microscope[J]. Optica, 1, 285-289(2014).
[35] Morris P A, Aspden R S, Bell J, et al. Imaging with a small number of photons[J]. Nature Communications, 6, 5913(2015).
[36] Duarte M F, Davenport M A, Takhar D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 25, 83-91(2008).
[37] [37] Cès E J. Compressive sampling[C]Proceedings of the International Congress of Mathematicians, 2006, 3: 14331452.
[38] Candes E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 25, 21-30(2008).
[39] Candes E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 52, 489-509(2006).
[40] Yu W K, Li M F, Yao X R, et al. Adaptive compressive ghost imaging based on wavelet trees and sparse representation[J]. Optics Express, 22, 7133-7144(2014).
[41] Li J, Li Y, Li J, et al. Single-pixel compressive optical image hiding based on conditional generative adversarial network[J]. Optics Express, 28, 22992-23002(2020).
[42] Giljum A, Liu W, Li L, et al. General neural network approach to compressive feature extraction[J]. Applied Optics, 60, G217-G223(2021).
[43] Kallepalli A, Innes J, Padgett M. Compressed sensing in the far-field of the spatial light modulator in high noise conditions[J]. Scientific Reports, 11, 1-8(2021).
[44] Wu G H, Li T H, Li J H, et al. Ghost imaging under low-rank constraint[J]. Optics Letters, 44, 4311-4314(2019).
[45] Lochocki B, Abrashitova K, de Boer J F, et al. Ultimate resolution limits of speckle-based compressive imaging[J]. Optics Express, 29, 3943-3955(2021).
[46] Zhang Z, Ma X, Zhong J. Single-pixel imaging by means of Fourier spectrum acquisition[J]. Nature Communications, 6, 6225(2014).
[47] Ma Y, Yin Y, Jiang S, et al. Single pixel 3D imaging with phase-shifting fringe projection[J]. Optics and Lasers in Engineering, 140, 106532(2021).
[48] Starling D J, Storer I, Howland G A. Compressive sensing spectroscopy with a single pixel camera[J]. Applied Optics, 55, 5198-5202(2016).
[49] Magalhaes F, Abolbashari M, Araujo F M, et al. High-resolution hyperspectral single-pixel imaging system based on compressive sensing[J]. Optical Engineering, 51, 071406(2012).
[50] Liu S, Liu Z, Wu J, et al. Hyperspectral ghost imaging camera based on a flat-field grating[J]. Optics Express, 26, 17705-17716(2018).
[51] Duran V, Clemente P, Fernandez-Alonso M, et al. Single-pixel polarimetric imaging[J]. Optics Letters, 37, 824-826(2012).
[52] Welsh S S, Edgar M P, Bowman R, et al. Near video-rate linear Stokes imaging with single-pixel detectors[J]. Journal of Optics, 17, 025705(2015).
[53] Wu H, Zhao M, Li F, et al. Underwater polarization‐based single pixel imaging[J]. Journal of the Society for Information Display, 28, 157-163(2020).
[54] Wang G, Zheng H, Tang Z, et al. All-optical naked-eye ghost imaging[J]. Scientific Reports, 10, 1-7(2020).
[55] Clemente P, Durán V, Tajahuerce E, et al. Optical encryption based on computational ghost imaging[J]. Optics Letters, 35, 2391-2393(2010).
[56] Tanha M, Kheradmand R, Ahmadi-Kandjani S, et al. Gray-scale and color optical encryption based on computational ghost imaging[J]. Applied Physics Letters, 101, 101108(2012).
[57] Sui L, Pang Z, Cheng Y, et al. An optical image encryption based on computational ghost imaging with sparse reconstruction[J]. Optics and Lasers in Engineering, 143, 106627(2021).
[58] Zhang, Z, Jiao S, Yao M, et al. Secured single-pixel broadcast imaging[J]. Optics Express, 26, 14578-14591(2018).
[59] Ota S, Horisaki R, Kawamura Y, et al. Ghost cytometry[J]. Science, 360, 1246-1251(2018).
[60] [60] Studer V, Bobin J, Chahid M, et al. Compressive fluescence microscopy f biological hyperspectral imaging[C]Proceedings of the National Academy of Sciences, 2012, 109(26): E1679E1687.
[61] Gibson G M, Sun B, Edgar M P, et al. Real-time imaging of methane gas leaks using a single-pixel camera[J]. Optics Express, 25, 2998-3005(2017).
[62] Zhang, Z, Ye J, Deng Q, et al. Image-free real-time detection and tracking of fast moving object using a single-pixel detector[J]. Optics Express, 27, 35394-35401(2019).
[63] Deng Q, Zhang Z, Zhong J. Image-free real-time 3-D tracking of a fast-moving object using dual-pixel detection[J]. Optics Letters, 45, 4734-4737(2020).
[64] Jiang W, Li X, Peng X, et al. Imaging high-speed moving targets with a single-pixel detector[J]. Optics Express, 28, 7889-7897(2020).
[65] Zernike, F. How I discovered phase contrast[J]. Science, 121, 345-349(1955).
[66] Bache M, Magatti D, Ferri F, et al. Coherent imaging of a pure phase object with classical incoherent light[J]. Physical Review A, 73, 053802(2006).
[67] Han W G. Phase-retrieval ghost imaging of complex-valued objects[J]. Physical Review A, 82, 023828(2010).
[68] Shirai T, Setälä T, Friberg A T. Ghost imaging of phase objects with classical incoherent light[J]. Physical Review A, 84, 041801(2011).
[69] Zhang D J, Tang Q, Wu T F, et al. Lensless ghost imaging of a phase object with pseudo-thermal light[J]. Applied Physics Letters, 104, 121113(2014).
[70] Soldevila F, Durán V, Clemente P, et al. Phase imaging by spatial wavefront sampling[J]. Optica, 5, 164-174(2018).
[71] Clemente P, Duran V, Tajahuerce E, et al. Single-pixel digital ghost holography[J]. Physical Review A, 86, 041803(2012).
[72] Clemente P, Durán V, Tajahuerce E, et al. Compressive holography with a single-pixel detector[J]. Optics Letters, 38, 2524-2527(2013).
[73] Wu D, Luo J, Huang G, et al. Imaging biological tissue with high-throughput single-pixel compressive holography[J]. Nature Communications, 12, 1-12(2021).
[74] Liu R, Zhao S, Zhang P, et al. Complex wavefront reconstruction with single-pixel detector[J]. Applied Physics Letters, 114, 161901(2019).
[75] Zhao S, Liu R, Zhang P, et al. Fourier single-pixel reconstruction of a complex amplitude optical field[J]. Optics Letters, 44, 3278-3281(2019).
[76] Zhao S, Chen S, Wang X, et al. Measuring the complex spectrum of orbital angular momentum and radial index with a single-pixel detector[J]. Optics Letters, 45, 5990-5993(2020).
[77] Horisaki R, Matsui H, Tanida J. Single-pixel compressive diffractive imaging with structured illumination[J]. Applied Optics, 56, 4085-4089(2017).
[78] Li M, Bian L, Zheng G, et al. Single-pixel ptychography[J]. Optics Letters, 46, 1624-1627(2021).
[79] Shechtman Y, Eldar Y C, Cohen O, et al. Phase retrieval with application to optical imaging: A contemporary overview[J]. IEEE Signal Processing Magazine, 32, 87-109(2015).
[80] Platt B C, Shack R. History and principles of Shack-Hartmann wavefront sensing[J]. Journal of Refractive Surgery, 17, S573-S577(2001).
[81] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 7, 739-745(2013).
[82] Streibl N. Phase imaging by the transport equation of intensity[J]. Optics Communications, 49, 6-10(1984).
[83] Chapman H N, Nugent K A. Coherent lensless X-ray imaging[J]. Nature Photonics, 4, 833-839(2010).
[84] Wang B Y, Han L, Yang Y, et al. Wavefront sensing based on a spatial light modulator and incremental binary random sampling[J]. Optics Letters, 42, 603-606(2017).
[85] Martienssen W, Spiller E. Coherence and fluctuations in light beams[J]. American Journal of Physics, 32, 919-926(1964).
[86] Zhang Z, Wang X, Zheng G, et al. Hadamard single-pixel imaging versus Fourier single-pixel imaging[J]. Optics Express, 25, 19619-19639(2017).
[87] Edgar M P, Gibson G M, Bowman R W, et al. Simultaneous real-time visible and infrared video with single-pixel detectors[J]. Scientific Reports, 5, 1-8(2015).
[88] Xi M, Chen H, Yuan Y, et al. Bi-frequency 3D ghost imaging with Haar wavelet transform[J]. Optics Express, 27, 32349-32359(2019).
[89] Davenport M A, Wakin M B. Analysis of orthogonal matching pursuit using the restricted isometry property[J]. IEEE Transactions on Information Theory, 56, 4395-4401(2010).
[90] Zhang Z, Liu S, Peng J, et al. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements[J]. Optica, 5, 315-319(2018).
[91] Tao C, Zhu H, Wang X, et al. Compressive single-pixel hyperspectral imaging using RGB sensors[J]. Optics Express, 29, 11207-11220(2021).
[92] Gao W, Yan Q R, Zhou H L, et al. Single photon counting compressive imaging using a generative model optimized via sampling and transfer learning[J]. Optics Express, 29, 5552-5566(2021).
[93] Shin S, Lee K R, Baek Y S, et al. Reference-free single-point holographic imaging and realization of an optical bidirectional transducer[J]. Physical Review Applied, 9, 044042(2018).
[94] Goorden S A, Bertolotti J, Mosk A P. Superpixel-based spatial amplitude and phase modulation using a digital micromirror device[J]. Optics Express, 22, 17999-18009(2014).
[95] Chan W L, Moravec M L, Baraniuk R G, et al. Terahertz imaging with compressed sensing and phase retrieval[J]. Optics Letters, 33, 974-976(2008).
[96] Horisaki R, Ogura Y, Aino M, et al. Single-shot phase imaging with a coded aperture[J]. Optics Letters, 39, 6466-6469(2014).
Get Citation
Copy Citation Text
Ruifeng Liu, Shupeng Zhao, Fuli Li. Single-pixel complex amplitude imaging (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210735
Category: Special issue—Single-pixel imaging
Received: Oct. 8, 2021
Accepted: Nov. 4, 2021
Published Online: Feb. 9, 2022
The Author Email: Ruifeng Liu (ruifeng.liu@mail.xjtu.edu.cn)