Chinese Journal of Lasers, Volume. 51, Issue 8, 0810004(2024)

Land Cover Classification Method Integrating Spaceborne LiDAR Combined with Multispectral Images

Xing Huang1, Xuyan Hu2, Weiwei Liu3, and Hong Zhao4、*
Author Affiliations
  • 1Lishui Institute of Territorial Spatial Planning and Mapping, Lishui 323000, Zhejiang , China
  • 2Zhejiang South Comprehensive Engineering Survey and Mapping Institute Co., Hangzhou 310030, Zhejiang , China
  • 3Zhejiang Academy of Surveying and Mapping Science and Technology, Hangzhou 311121, Zhejiang , China
  • 4College of Aeronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu , China
  • show less
    Figures & Tables(16)
    Support vector machine (SVM) algorithm principle
    Sample site distribution in the study area
    Importance of different features
    • Table 1. GEDI L2A extraction parameters list

      View table

      Table 1. GEDI L2A extraction parameters list

      Variable nameRange of data valuesDescription
      quality_flag0, 1Quality identification
      degrade_flag0, 1Quality identification
      sensitivity0‒1Sensitivity
      lon_lowestmode118°‒123°Longitude
      lat_lowestmode27°‒32°Latitude
      elev_lowestmode0‒2000 mGround elevation
      elev_highestreturn0‒50 mCrown elevation
      digital_elevation_mode_srtm0‒2000 mSRTM elevation
      Rh(0,25,50,75,100)-10‒40 mPercentile height
      rx_nummodesNumber of modes detected in waveform
      lastmodeenergyEnergy in lowest detected mode
      smoothwidthWidth of Gaussian function used to smooth noise sections of waveforms
      rx_modelocsSample numbers of each detected mode (relative to bin 0 of waveform)
      rx_modewidths1 sigma width estimates of each detected mode in waveform
      peakPeak amplitude of raw waveform
      pk_smPeak amplitude of smoothed waveform
    • Table 2. GEDI L2A valid footprint screening conditions

      View table

      Table 2. GEDI L2A valid footprint screening conditions

      Screening parameterScreening conditionInstruction
      degrade_flag0The state degradation flag is "1", indicating that the state of the indicating direction and/or positioning information decreases, which affects the accuracy of the GEDI L2A data. Therefore, the light spot with the value of 1 is deleted
      sensitivity≥0.95Sensitivity parameter: on land, a sensitivity threshold greater than or equal to 0.9 is used to obtain better quality light spots, so the light spots with sensitivity less than 0.95 are deleted
      quality_flag1A quality mark of "1" indicates that the waveform meets specific criteria based on energy, sensitivity, amplitude, and real-time surface tracking quality and can be represented as a valid waveform
      |elev_lowestmode-SRTM|≤50

      Because GEDI is susceptible to the influence of clouds in the data collection, delete the light spot whose elev_lowestmode value is significantly different from the SRTM value of the GEDI footprint

      (|elev_lowestmode-SRTM|>50 m)

      rx_assess_flag0If the value is 1, various errors may occur in the waveform. Therefore, the light spot of rx_assess_flag=1 is deleted
    • Table 3. Basic information of Landsat spectral band

      View table

      Table 3. Basic information of Landsat spectral band

      BandResolution /mWavelength /nmDescription
      B230452‒512Blue
      B330533‒590Green
      B430636‒673Red
      B530851‒879Near infrared
      B6301566‒1651Shortwave infrared 1
      B7302107‒2294Shortwave infrared 2
    • Table 4. Spectral vegetation index

      View table

      Table 4. Spectral vegetation index

      Vegetation indexEquation
      NDVIζNDVI=ρNIR-ρREDρNIR+ρRED
      NDBIζNDBI=ρSNIR-ρNIRρSNIR+ρNIR
      NDWIζNDWI=ρGREEN-ρNIRρGREEN+ρNIR
      ARVIζARVI=ρNIR-2ρRED-ρBLUEρNIR+2ρRED-ρBLUE
      EVIζEVI=2.5ρNIR-ρREDρNIR+6ρRED-7.5ρBLUE+1
      RVIζRVI=ρNIRρRED
    • Table 5. Sample size for each land cover category

      View table

      Table 5. Sample size for each land cover category

      Land cover category

      Sample

      count

      Training sample countValidation sample count
      Forest529375154
      Shrubland465316149
      Grassland502350152
      Cropland464318146
      Water456328128
      Others486350136
    • Table 6. Different groups of features

      View table

      Table 6. Different groups of features

      Feature group numberA feature group contains features
      1All waveform features (47)
      2All spectral features (13)
      3Selected waveform features (9)
      4Selected spectral features (11)
      5Selected waveform and spectral features (20)
      6Selected regions sample (6 regions)
    • Table 7. Confusion matrix of feature group 1

      View table

      Table 7. Confusion matrix of feature group 1

      SVMGround reality dataUA /%KappaOA /%
      ForestShrublandGrasslandCroplandWaterOthers
      Forest962015129262.340.5965.10
      Shrubland38781754752.35
      Grassland351584123355.26
      Cropland881010242067.11
      Water4172111386.72
      Others93315109670.59
      PA /%50.5362.4061.7668.9278.7273.28
    • Table 8. Confusion matrix of feature group 2

      View table

      Table 8. Confusion matrix of feature group 2

      SVMGround reality dataUA /%KappaOA /%
      ForestShrublandGrasslandCroplandWaterOthers
      Forest13401011887.010.7578.825
      Shrubland159120182361.07
      Grassland8912780083.55
      Cropland11536910362.33
      Water1010123396.09
      Others13222311483.82
      PA /%73.6385.0567.9176.4795.3580.85
    • Table 9. Confusion matrix of feature group 3

      View table

      Table 9. Confusion matrix of feature group 3

      SVMGround reality dataUA /%KappaOA /%
      ForestShrublandGrasslandCroplandWaterOthers
      Forest12019723377.920.6872.90
      Shrubland23842592656.38
      Grassland152094851061.84
      Cropland261210832171.05
      Water2324116190.63
      Others7724311383.09
      PA /%71.0160.4366.2080.0087.8873.38
    • Table 10. Confusion matrix of feature group 4

      View table

      Table 10. Confusion matrix of feature group 4

      SVMGround reality dataUA /%KappaOA /%
      ForestShrublandGrasslandCroplandWaterOthers
      Forest13610101688.310.7981.75
      Shrubland1310017161267.11
      Grassland5813090085.53
      Cropland94301070270.39
      Water1010126098.44
      Others13231411383.09
      PA /%76.8486.9671.8279.8596.1884.96
    • Table 11. Confusion matrix of feature group 5

      View table

      Table 11. Confusion matrix of feature group 5

      SVMGround reality dataUA /%KappaOA /%
      ForestShrublandGrasslandCroplandWaterOthers
      Forest1436020392.860.8990.68
      Shrubland13126460084.56
      Grassland5813440188.16
      Cropland1661370091.33
      Water2001122395.31
      Others3212212692.65
      PA /%85.6385.1492.4190.1398.3994.74
    • Table 12. The number of samples of land cover categories in the subregion

      View table

      Table 12. The number of samples of land cover categories in the subregion

      CategoryThe number of samples
      Region 1Region 2Region 3Region 4Region 5Region 6
      Forest100991051039999
      Shrubland61939610310528
      Grassland981039910210253
      Cropland1029795989895
      Water1043325910466
      Others9526951039697
    • Table 13. The overall accuracy of sub-region prediction results

      View table

      Table 13. The overall accuracy of sub-region prediction results

      ModelOA /%
      Region 1Region 2Region 3Region 4Region 5Region 6
      Region 1 model88.5086.2984.2384.3986.4487.04
      Region 2 model85.5087.2785.2986.6984.3986.65
      Region 3 model85.4384.2185.9684.9383.8983.31
      Region 4 model84.2583.0185.2586.9784.7083.19
      Region 5 model87.7185.8483.5283.4188.5486.24
      Region 6 model87.3584.4186.3185.2885.4289.21
    Tools

    Get Citation

    Copy Citation Text

    Xing Huang, Xuyan Hu, Weiwei Liu, Hong Zhao. Land Cover Classification Method Integrating Spaceborne LiDAR Combined with Multispectral Images[J]. Chinese Journal of Lasers, 2024, 51(8): 0810004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: remote sensing and sensor

    Received: Jul. 27, 2023

    Accepted: Oct. 9, 2023

    Published Online: Mar. 29, 2024

    The Author Email: Zhao Hong (nuaazhaohong@nuaa.edu.cn)

    DOI:10.3788/CJL231063

    CSTR:32183.14.CJL231063

    Topics