Journal of Terahertz Science and Electronic Information Technology , Volume. 22, Issue 6, 581(2024)
Research progress of terahertz waveguide
[2] [2] NALLAPPAN K, SKOROBOGATIY M. Wired channel modeling for frequency hopping system in secure terahertz communications[C]// 2021 IEEE Research and Applications of Photonics in Defense Conference(RAPID). Miramar Beach, FL, USA:IEEE, 2021: 1-2. doi:10. 1109/RAPID51799.2021.9521450.
[3] [3] LEE J Y,WON H,SONG H I,et al. A 14 Gb/s clad dielectric waveguide link using 73 GHz carrier frequency with a stochastic RF phase synchronization system in 40 nm CMOS[C]// 2018 International Conference on Electronics,Information,and Communication (ICEIC). Honolulu,HI,USA:IEEE, 2018: 1-4. doi:10.23919/ELINFOCOM.2018.8330630.
[4] [4] LEE J Y, SONG H I, KWON S W, et al. Future of high-speed short-reach interconnects using clad-dielectric waveguideC]// Proceedings Volume 10109,Optical Interconnects XVII. San Francisco:SPIE, 2017: 1010903. doi:10. 1117/ 12.2249252.
[5] [5] TYTGAT M, VAN THIENEN N, REYNAERT P. A 90 GHz receiver in 40 nm CMOS for plastic waveguide links[J]. Analog Integrated Circuits and Signal Processing, 2015,83( 1):55-64. doi:10. 1007/s 10470-015-0510-6.
[6] [6] TYTGAT M, REYNAERT P. A plastic waveguide receiver in 40 nm CMOS with on-chip bondwire antenna[C]// 2013 Proceedings of the ESSCIRC(ESSCIRC). Bucharest,Romania:IEEE, 2013:335-338. doi:10. 1109/ESSCIRC.2013.6649141.
[7] [7] KIM Y,NAN Lan,CONG J,et al. High-speed mm-wave data-link based on hollow plastic cable and CMOS transceiver[J]. IEEE Microwave and Wireless Components Letters, 2013,23( 12):674-676. doi:10. 1109/LMWC.2013.2283862.
[8] [8] ZHANG Yang, DE WITM, REYNAERT P. A D-band foam-cladded dielectric waveguide communication link with automatic tuning[C]// ESSCIRC 2018 IEEE the 44th European Solid State Circuits Conference. Dresden,Germany:IEEE, 2018:234-237.
[9] [9] OOMS S, REYNAERT P. A flexible low-latency DC-to-4 Gbit/s link operating from - 40 to +200°C in 28 nm CMOS for galvanically isolated applications[C]// 2018 IEEE Radio Frequency Integrated Circuits Symposium(RFIC). Philadelphia, PA, USA:IEEE, 2018: 100-103. doi:10. 1109/RFIC.2018.8428995.
[10] [10] DE WIT M,ZHANG Yang,REYNAERT P. Analysis and design of a foam-cladded PMF link with phase tuning in 28 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2019,54(7): 1960-1969. doi:10. 1109/JSSC.2019.2907163.
[11] [11] MCGOWAN R W, GALLOT G, GRISCHKOWSKY D. Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides[J]. Optics Letters, 1999,24(20): 1431-1433. doi:10. 1364/ol.24.001431.
[12] [12] GALLOT G, JAMISON S P, MCGOWAN R W, et al. Terahertz waveguides[J]. JOSA B, 2000, 17(5): 851-863. doi: 10. 1364/ JOSAB. 17.000851.
[13] [13] HARRINGTON J A, GEORGE R, PEDERSEN P, et al. Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation[J]. Optics Express, 2004, 12(21):5263-5268. doi:10. 1364/OPEX. 12.005263.
[16] [16] WANG Kanglin, MITTLEMAN D M. Guided propagation of terahertz pulses on metal wires[J]. Journal of The Optical Society of America B-optical Physics, 2005,22(9):2001-2008. doi:10. 1007/978-1-4020-6503-3_5.
[17] [17] WANG Kanglin, MITTLEMAN D M. Metal wires for terahertz wave guiding[J]. Nature, 2004,432(7015): 376-379. doi: 10. 1038/ nature03040.
[18] [18] JEON T I, ZHANG Jiangquan, GRISCHKOWSKY D. THz Sommerfeld wave propagation on a single metal wire[J]. Applied Physics Letters, 2005,86( 16) 1904-1-3.
[19] [19] HE Xiaoyong, CAO Juncheng, FENG Songlin. Simulation of the propagation property of metal wires terahertz waveguides[J]. Chinese Physics Letters, 2006,23(8):2066. doi:10. 1088/0256-307X/23/8/029
[20] [20] MENDIS R, GRISCHKOWSKY D. Undistorted guided-wave propagation of subpicosecond terahertz pulses[J]. Optics Letters, 2001,26( 11):846-848. doi:10. 1364/ol.26.000846.
[21] [21] ISLAM M S, CORDEIRO C M B, FRANCO M A R, et al. Terahertz optical fibers [Invited] [J]. Optics Express, 2020, 28( 11): 16089-16117. doi:10. 1364/OE.389999.
[22] [22] BERAVAT R,WONG G K L,FROSZ M H,et al. Twist-induced guidance in coreless photonic crystal fiber:a helical channel for light[J]. Science Advances, 2016,2( 11):e1601421. doi:10. 1126/sciadv. 1601421.
[23] [23] CHEN Lijin,CHEN Huangwen,KAO T F,et al. Low-loss subwavelength plastic fiber for terahertz waveguiding[J]. Optics Letters, 2006,31(3):308-310. doi:10. 1364/OL.31.000308.
[24] [24] NALLAPPAN K,CAO Yang,XU Guofu,et al. Dispersion-limited versus power-limited terahertz communication links using solid core subwavelength dielectric fibers[J]. Photonics Res, 2020,8( 11): 1757-1775.
[25] [25] ANTHONY J,LEONHARDT R,ARGYROS A,et al. Characterization of a microstructured Zeonex terahertz fiber[J]. Journal of the Optical Society of America B, 2011,28(5): 1013-1018. doi:10. 1364/JOSAB.28.001013.
[26] [26] NIELSEN K,RASMUSSEN H K,ADAM A J L,et al. Bendable,low-loss Topas fibers for the terahertz frequency range [J]. Optics Express, 2009, 17( 10):8592-8601. doi:10. 1364/oe. 17.008592.
[27] [27] MEI Sen, KONG Depeng, WANG Lili, et al. Suspended graded-index porous core POF for ultra-flat near-zero dispersion terahertz transmission[J]. Optical Fiber Technology, 2019(52): 101946. doi:10. 1016/j.yofte.2019. 101946.
[28] [28] MEI Sen,KONG Depeng, MU Qiyuan,et al. A porous core Zeonex THz fiber with low loss and small dispersion[J]. Optical Fiber Technology, 2022(69): 102834. doi:10. 1016/j.yofte.2022. 102834.
[29] [29] KAVEH H,JAHANGIRI F,AMINI T. Silicon nitride based photonic crystal fiber with highly improved birefringence for low loss terahertz propagation[J]. Opts Continuum, 2022, 1(2):388-398. doi:10. 1364/OPTCOM.443208.
[30] [30] AFLAKIAN N,LAFAVE T P,KENNETH K O,et al. Design,fabrication,and demonstration of a dielectric vortex waveguide in the sub-terahertz region[J]. Applied Optics, 2017,56(25):7123-7129. doi:10. 1364/AO.56.007123.
[31] [31] KABIR M A, AHMED K, HASSAN M M, et al. Design a photonic crystal fiber of guiding terahertz orbital angular momentum beams in optical communication[J]. Optics Communications, 2020(475): 126192. doi:10. 1016/j.optcom.2020. 126192.
[32] [32] YUAN Yuan, KONG Depeng, GUAN Lei. A novel microstructured polymer tube for THz vortex beams guidance[J]. Optics Communications, 2022,505( 1): 127502.
[33] [33] YUAN Yuan, KONG Depeng, GUAN Lei, et al. Terahertz fiber with multi-concentric ring cores for OAM modes propagation[J]. Physica Scripta, 2023,98(4):045504. doi:10. 1088/ 1402-4896/acbf87.
[34] [34] YAKASAI I K, ABAS P E, BEGUM F. Review of porous core photonic crystal fibers for terahertz waveguiding[J]. Optik, 2021,(229): 166284. doi:10. 1016/j.ijleo.2021. 166284.
[35] [35] CREGAN R F,MANGAN B J,KNIGHT J C,et al. Single-mode photonic band gap guidance of light in air[J]. Science, 1999,285(5433): 1537-1539. doi:10. 1126/science.285.5433. 1537.
[36] [36] PONSECA J C S,POBRE R, ESTACIO E, et al. Transmission of terahertz radiation using a microstructured polymer optical fiber[J]. Optics Letters, 2008,33(9):902-904. doi:10. 1364/OL.33.000902.
[37] [37] VINCETTI L. Hollow core photonic band gap fiber for THz applications[J]. Microwave and Optical Technology Letters, 2009,51(7): 1711-1714. doi:10. 1002/mop.24407.
[38] [38] VINCETTI L,POLEMI A. Numerical analysis of propagating and radiating properties of hollow core photonic band gap fibres for THz applications[J]. IEEE Transactions on Antennas and Propagation, 2010,58(7):2465-2468. doi:10. 1109/TAP.2010.2048854.
[39] [39] WU Ziran, NG W R, GEHM M E, et al. Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping[J]. Optics Express, 2011, 19(5):3962-3972. doi:10. 1364/OE. 19.003962.
[40] [40] BARH A, VARSHNEY R K, PAL B P, et al. Design of a polymer-based hollow-core bandgap fiber for low-loss terahertz transmission[J]. IEEE Photonics Technology Letters, 2016,28( 15): 1703-1706. doi:10. 1109/LPT.2016.2544198.
[41] [41] PAKARZADEH H, REZAEI S M, NAMROODI L. Hollow-core photonic crystal fibers for efficient terahertz transmission[J]. Optics Communications, 2019(433):81-88. doi:10. 1016/j.optcom.2018.09.065.
[42] [42] NIELSEN K, RASMUSSEN H K,JEPSEN P U, et al. Porous-core honeycomb bandgap THz fiber[J]. Optics Letters, 2011, 36(5): 666-668. doi:10. 1364/OL.36.000666.
[43] [43] BAO Hualong, NIELSEN K, RASMUSSEN H K, et al. Fabrication and characterization of porous-core honeycomb bandgap THz fibers[J]. Optics Express, 2012,20(28):29507-29517. doi:10. 1364/OE.20.029507.
[44] [44] FAN Jintao, LI Yanfeng, HU Minglie, et al. Design of broadband porous-core bandgap terahertz fibers[J]. IEEE Photonics Technology Letters, 2016,28( 10): 1096-1099. doi:10. 1109/LPT.2016.2531023
[45] [45] LU Dunke, WAN Minggui, LI Zhiwei, et al. Photonic bandgap terahertz fibers based on honeycombed tubes[J]. Optics Express, 2021,29(26):43516-43530. doi:10. 1364/OE.433608.
[46] [46] DUGUAY M A, KOKUBUN Y, KOCH T L, et al. Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures[J]. Applied Physics Letters, 1986,49( 1): 13-15. doi:10. 1063/ 1.97085.
[47] [47] LITCHINITSER N M, ABEELUCK A K, HEADLEY C, et al. Antiresonant reflecting photonic crystal optical waveguides[J]. Optics Letters, 2002,27( 18): 1592-1594. doi:10. 1364/ol.27.001592.
[48] [48] BENABID F, KNIGHT J C, ANTONOPOULOS G, et al. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber[J]. Science, 2002,298(5592):399-402. doi:10. 1126/science. 1076408.
[49] [49] LU Jayu, YU Chinping, CHANG Hung, et al. Terahertz air-core microstructure fiber[J]. Applied Physics Letters, 2008, 92(6):064105. doi:.org/ 10. 1063/ 1.2839576.
[50] [50] WANG Yingying, COUNY F, ROBERTS P J, et al. Low loss broadband transmission in optimized core-shape Kagome hollow- core PCF[C]// CLEO/QELS: 2010 Laser Science to Photonic Applications. San Jose, CA, USA: IEEE, 2010: 1-2. doi: 10. 1364/ CLEO.2010.CPDB4.
[51] [51] VINCETTI L, SETTI V, ZOBOLI M. Terahertz tube lattice fibers with octagonal symmetry[J]. IEEE Photonics Technology Letters, 2010,22( 13):972-974. doi:10. 1109/LPT.2010.2048426.
[52] [52] KOLYADIN A N, KOSOLAPOV A F, PRYAMIKOV A D, et al. Light transmission in negative curvature hollow core fiber in extremely high material loss region[J]. Optics Express, 2013,21(8):9514-9519. doi:10. 1364/OE.21.009514.
[53] [53] KOSOLAPOV A F, ALAGASHEV G K, KOLYADIN A N, et al. Hollow-core revolver fibre with a double-capillary reflective cladding[J]. Quantum Electronics, 2016,46(3):267. doi:10. 1070/QEL15972.
[54] [54] XUE Lu,SHENG Xinzhi,MU Qiyuan,et al. 3D-printed high-birefringence THz hollow-core anti-resonant fiber with an elliptical core[J]. Optics Express, 2023,31( 16):26178-26193. doi:10. 1364/OE.497258.
[55] [55] XUE Lu, SHENG Xinzhi, JIA Haoqiang, et al. An ultra-wide single-mode frequency bandwidth and low-flattened dispersion hollow-core negative-curvature THz waveguide[J]. Journal of Lightwave Technology, 2023, 41( 18): 6043-6052. doi: 10. 1109/ JLT.2023.3269788.
[56] [56] CRUZ A L S, CORDEIRO C M B, FRANCO M A R. 3D printed hollow-core terahertz fibers[J]. FIBERS, 2018, 6(3): 43. doi: 10.3390/fib6030043.
[57] [57] XUE Lu, SHENG Xinzhi, LOU Shuqin, et al. High-birefringence low-loss hollow-core THz waveguide embedded parallel slab cladding[J]. IEEE Transactions on Terahertz Science and Technology, 2022, 12(5):471-480.
[58] [58] PHANCHAT N, TALATAISONG W, KLOKKOU N, et al. Extruded TOPAS hollow-core anti-resonant fiber optimized for THz guidance at 0.9 THz[J]. Optics Express, 2022,30(8): 13059-13069. doi:10. 1364/OE.450550.
[59] [59] TU Jiajing, LIU Zhengyong, GAO Shecheng, et al. Ring-core fiber with negative curvature structure supporting orbital angular momentum modes[J]. Optics Express, 2019,27( 15):20358-20372. doi:10. 1364/OE.27.020358.
[60] [60] HAYASHI J G, MOUSAVI S M A, VENTURA A, et al. Numerical modeling of a hybrid hollow-core fiber for enhanced mid- infrared guidance[J]. Optics Express, 2021,29( 11): 17042-17052. doi:10. 1364/OE.423257.
[62] [62] MENG Miao, YAN Dexian, CAO Mingxuan, et al. Design of negative curvature fiber carrying multiorbital angular momentum modes for terahertz wave transmission[J]. Results in Physics, 2021(29): 104766. doi:10. 1016/j.rinp.2021. 104766.
[63] [63] DU Zixuan, ZHOU Yan, LUO Si, et al. Highly birefringent hollow-core anti-resonant terahertz fiber with a thin strut microstructure[J]. Optics Express, 2022,30(3):3783-3792. doi:10. 1364/OE.448105.
[64] [64] WOOD R W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum[J]. Proceedings of the Physical Society of London, 1902, 18( 1):269-275. doi:10. 1088/ 1478-7814/ 18/ 1/325.
[65] [65] PINES D. Collective energy losses in solids[J]. Reviews of Modern Physics, 1956,28(3): 184. doi:1103/RevModPhys.28. 184.
[66] [66] SAXLER J, RIVAS J G, JANKE C, et al. Time-domain measurements of surface plasmon polaritons in the terahertz frequency range[J]. Physical Review B, 2004,69( 15): 155427. doi:10. 1103/PhysRevB.69. 155427.
[67] [67] VAN?DER?VALK NCJ,PLANKEN PCM. Eeffect of a dielectric coating on terahertz surface plasmon polaritonson metal wires [J]. Applied Physics Letters, 2005,87(7):071106. doi:10. 1063/ 1.2011773.
[68] [68] PENDRY J B, MARTIN-MORENO L, GARCIA-VIDAL F J. Mimicking surface plasmons with structured surfaces[J]. Science, 2004,305(5685):847-848. doi:10. 1126/science. 1098999.
[69] [69] WILLIAMS C R, ANDREWS S R, MAIER S A, et al. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces[J]. Nature Photonics, 2008,2(3): 175-179. doi: 10. 1038/nphoton.2007.301.
[70] [70] MARTIN-CANO D, NESTEROV M L, FERNANDEZ-DOMINGUEZ A I, et al. Domino plasmons for subwavelength terahertz circuitry[J]. Optics Express, 2010, 18(2):754-764. doi:10. 1364/OE. 18.000754.
[71] [71] SHEN Xiaopeng, CUI Tiejun, MARTIN-CANO D, et al. Conformal surface plasmons propagating on ultrathin and flexible films[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110( 1): 40-45. doi: 10. 1073/pnas. 1210417110.
Get Citation
Copy Citation Text
HAN Bingbing, MU Qiyuan, SHAO Wei, ZENG Qingling, ZHU Zhongbo, YUAN Yuan, KONG Depeng. Research progress of terahertz waveguide[J]. Journal of Terahertz Science and Electronic Information Technology , 2024, 22(6): 581
Category:
Received: Feb. 20, 2024
Accepted: --
Published Online: Aug. 22, 2024
The Author Email: YUAN Yuan (yuanyuan2015@opt.ac.cn)