Laser & Optoelectronics Progress, Volume. 55, Issue 6, 061003(2018)

A Fast Global Registration Algorithm Based on Correcting Point Cloud Principal Component Coordinate System

Xu Chen and Bingwei He*
Author Affiliations
  • School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, Fujian 350108, China
  • show less
    References(26)

    [4] Lv L, Sun L. An improved registration algorithm based on geometric feature for the calibration of workpiece coordinate[C]. 35 th Chinese Control Conference, Chengdu, Sichuan, 9475-9480(2016).

    [5] Abdi H, Williams L J. Principal component analysis[J]. Wiley Interdisciplinary Reviews Computational Statistics, 2, 433-459(2010).

    [6] Tao H J, Da F P. Automatic registration algorithm for the point clouds based on the normal vector[J]. Chinese Journal of Lasers, 40, 0809001(2013).

    [7] Huang Y, Da F P, Tao H J. An automatic registration algorithm for point cloud based on feature extraction[J]. Chinese Journal of Lasers, 42, 0308002(2015).

    [8] Wei S B, Wang S Q, Zhou C H et al. An iterative closest point algorithm based on biunique correspondence of point clouds for 3D reconstruction[J]. Acta Optica Sinica, 35, 0515003(2015).

    [11] Zeng F X, Li L, Diao X P. Iterative closest point algorithm registration based on curvature features[J]. Laser & Optoelectronics Progress, 54, 011003(2017).

    [13] Chen M L, Lu W X, Wan Y C et al. Automatic registration of terrestrial point clouds without additional information[J]. Chinese Journal of Lasers, 43, 0414003(2016).

    [14] Li R Z, Yang M, Tian Y et al. Point cloud registration algorithm based on the ISS feature points combined with improved ICP algorithm[J]. Laser & Optoelectronics Progress, 54, 111503(2017).

    [15] Qiao C, Ding Y L, Xu Y S et al. Image registration method based on geo-location information and precision analysis[J]. Acta Optica Sinica, 37, 0828001(2017).

    [16] Wang G H, Li N, Li S. Enhanced histogram feature descriptor for automated point cloud registration[C]. 35 th Chinese Control Conference, Chengdu, Sichuan, 7032-7037(2016).

    [17] Rusu R B, Blodow N, Beetz M. Fast point feature histograms (FPFH) for 3D registration[C]. International Conference on Robotics and Automation, Kobe, Japan, 3212-3217(2009).

    [18] Shu C X, He Y T, Sun Q K. Point cloud registration based on convolutional neural network[J]. Laser & Optoelectronics Progress, 54, 031001(2017).

    [19] Myronenko A, Song X. Point set registration:coherent point drift[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 2262-2275(2010).

    [20] Lu M, Zhao J, Guo Y et al. A 3D point cloud registration algorithm based on fast coherent point drift[C]. Applied Imagery Pattern Recognition Workshop, Washington, USA, 1-6(2015).

    [23] Yang J, Li H, Jia Y. GO-ICP: solving 3D registration efficiently and globally optimally[C]. International Conference on Computer Vision, Sydney, Australia, 1457-1464(2013).

    Tools

    Get Citation

    Copy Citation Text

    Xu Chen, Bingwei He. A Fast Global Registration Algorithm Based on Correcting Point Cloud Principal Component Coordinate System[J]. Laser & Optoelectronics Progress, 2018, 55(6): 061003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Oct. 27, 2017

    Accepted: --

    Published Online: Sep. 11, 2018

    The Author Email: Bingwei He (mebwhe@fzu.edu.cn)

    DOI:10.3788/LOP55.061003

    Topics