Laser & Optoelectronics Progress, Volume. 61, Issue 24, 2437005(2024)

Underwater Object Detection Using a Multiscale and Cross-Spatial Information Aggregation Network

Jihai Yang1 and Xiaofang Pei1,2、*
Author Affiliations
  • 1School of Electronics and Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu , China
  • 2School of Electronic and Information Engineering, Wuxi University, Wuxi 214105, Jiangsu , China
  • show less
    Figures & Tables(14)
    Structure of multiscale and cross-spatial information aggregation network
    Structure of DPM
    Schematic diagram of DCNv2 module
    Structure of MAPE module
    Structure of EMA module
    Structure of Conv2former
    Structure of ASSF
    Comparison of experimental results before and after introducing DPM module. (a) (b) Original images; (c) (d) before introducing the DPM; (e) (f) after introducing the DPM
    Comparison of detection results for different picture types. (a) Background blur; (b) different scale target; (c) target occlusion
    Comparison of detection results for different complex scenes. (a) Color deviation; (b) fog effect; (c) light interference
    • Table 1. Ablation experiment results on URPC dataset

      View table

      Table 1. Ablation experiment results on URPC dataset

      Experiment numberYOLOv7-tinyDPMConv2formerMAPEASSFP /%R /%mAP@0.5 /%mAP@0.5∶0.95 /%FLOPs /G
      178.571.678.041.013.2
      278.272.678.441.310.5
      379.671.978.841.912.1
      479.672.179.442.313.5
      579.472.379.242.110.9
      680.373.180.342.512.4
      781.473.780.743.112.2
      882.174.281.544.312.7
    • Table 2. Comparision of experiment results for integrating different attention mechanisms into PS

      View table

      Table 2. Comparision of experiment results for integrating different attention mechanisms into PS

      ModelP /%R /%mAP@0.5 /%mAP@0.5∶0.95 /%
      YOLOv7-tiny78.571.678.041.0
      YOLOv7-tiny-PS79.471.778.541.9
      YOLOv7-tiny-PS-ECA79.172.378.941.8
      YOLOv7-tiny-PS-SIMAM79.672.179.142.1
      YOLOv7-tiny-PS-SE79.473.178.541.4
      YOLOv7-tiny-PS-CA78.372.078.441.2
      YOLOv7-tiny-PS-EMA (MAPE)79.672.179.442.3
    • Table 3. Comparasion of results for different models

      View table

      Table 3. Comparasion of results for different models

      ModelP /%R /%mAP@0.5 /%Parameters /MFLOPs /G
      SSD64.456.563.428.0116.2
      PANet68.266.176.54.88.7
      Cascade R-CNN80.673.281.198.3271.2
      Underwater-YCC80.271.980.3
      RoIMix75.269.377.324.424.9
      YOLOv879.172.679.711.228.6
      Proposed82.174.281.56.212.7
    • Table 4. Comparasion of migration experiment results in RUOD dataset

      View table

      Table 4. Comparasion of migration experiment results in RUOD dataset

      ModelP /%R /%mAP@0.5 /%Parameters /MFLOPs /G
      Faster R-CNN59.556.761.3115.1368.5
      AWBiFPN81.975.183.6
      SegNext67.163.468.938.015.9
      PANet70.765.372.44.88.7
      RoIMix68.062.469.224.424.9
      YOLOv882.775.883.111.228.6
      Proposed85.379.986.16.212.7
    Tools

    Get Citation

    Copy Citation Text

    Jihai Yang, Xiaofang Pei. Underwater Object Detection Using a Multiscale and Cross-Spatial Information Aggregation Network[J]. Laser & Optoelectronics Progress, 2024, 61(24): 2437005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Mar. 25, 2024

    Accepted: May. 8, 2024

    Published Online: Dec. 12, 2024

    The Author Email: Xiaofang Pei (xiaofangpei@163.com)

    DOI:10.3788/LOP240958

    CSTR:32186.14.LOP240958

    Topics