Journal of Synthetic Crystals, Volume. 52, Issue 5, 766(2023)

Investigation of Epitaxial III-V Quantum Well and Quantum Dot Lasers on Silicon for Monolithic Integration

WANG Jun, GE Qing, LIU Shuaicheng, MA Bojie, LIU Zhuoliang, ZHAI Hao, LIN Feng, JIANG Chen, LIU Hao, LIU Kai, YANG Yisu, WANG Qi, HUANG Yongqing, and REN Xiaomin
Author Affiliations
  • [in Chinese]
  • show less
    References(68)

    [1] [1] JAESEONG P, TANG M C, CHEN S M, et al. Heteroepitaxial growth of III-V semiconductors on silicon[J]. Crystals, 2020, 10(12): 1163.

    [2] [2] YANG J J, TANG M C, CHEN S M, et al. From past to future: on-chip laser sources for photonic integrated circuits[J]. Light: Science & Applications, 2023, 12(1): 1-3.

    [3] [3] PAVESI L. Thirty years in silicon photonics: a personal view[J]. Frontiers in Physics, 2021, 9: 709.

    [5] [5] CLOUTIER S G, KOSSYREV P A, XU J. Optical gain and stimulated emission in periodic nanopatterned crystalline silicon[J]. Nature Materials, 2005, 4(12): 887-891.

    [6] [6] CAMACHO-AGUILERA R E, CAI Y, PATEL N, et al. An electrically pumped germanium laser[J]. Optics Express, 2012, 20(10): 11316-11320.

    [7] [7] ZHOU Y Y, MIAO Y H, OJO S, et al. Electrically injected GeSn lasers on Si operating up to 100 K[J]. Optica, 2020, 7(8): 924-928.

    [8] [8] FANG A W, PARK H, COHEN O, et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser[J]. Optics Express, 2006, 14(20): 9203-9210.

    [9] [9] THIESSEN T, MAK J C C, DA FONSECA J, et al. Back-side-on-BOX heterogeneously integrated III-V-on-silicon O-band distributed feedback lasers[J]. Journal of Lightwave Technology, 2020, 38(11): 3000-3006.

    [11] [11] DUPREZ H, DESCOS A, FERROTTI T, et al. 1310 nm hybrid InP/InGaAsP on silicon distributed feedback laser with high side-mode suppression ratio[J]. Optics Express, 2015, 23(7): 8489-8497.

    [12] [12] SHANG C, WAN Y T, SELVIDGE J, et al. Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits[J]. ACS Photonics, 2021, 8(9): 2555-2566.

    [13] [13] SHANG C, SELVIDGE J, HUGHES E, et al. A pathway to thin GaAs virtual substrate on on-axis Si (001) with ultralow threading dislocation density[J]. Physica Status Solidi (a), 2021, 218(3): 2000402.

    [14] [14] SELVIDGE J, NORMAN J, HUGHES E T, et al. Defect filtering for thermal expansion induced dislocations in III-V lasers on silicon[J]. Applied Physics Letters, 2020, 117(12): 122101.

    [20] [20] LI W, CHEN S, TANG M, et al. Effect of rapid thermal annealing on threading dislocation density in III-V epilayers monolithically grown on silicon[J]. Journal of Applied Physics, 2018, 123(21): 215303.

    [21] [21] ZHU S, SHI B, LAU K M. Electrically pumped 1.5 μm InP-based quantum dot microring lasers directly grown on (001) Si[J]. Optics Letters, 2019, 44(18): 4566-4569.

    [22] [22] SHI B, ZHU S, LI Q, et al. 1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si[J]. Applied Physics Letters, 2017, 110(12): 121109.

    [23] [23] WEI W Q, WANG J H, ZHANG B, et al. InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1 300 nm and 1 550 nm[J]. Applied Physics Letters, 2018, 113(5): 053107.

    [24] [24] VOLZ K, BEYER A, WITTE W, et al. GaP-nucleation on exact Si (001) substrates for III/V device integration[J]. Journal of Crystal Growth, 2011, 315(1): 37-47.

    [25] [25] KWOEN J, JANG B, LEE J, et al. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001)[J]. Optics Express, 2018, 26(9): 11568-11576.

    [26] [26] ALCOTTE R, MARTIN M, MOEYAERT J, et al. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility[J]. APL Materials, 2016, 4(4): 046101.

    [27] [27] MARTIN M, CALISTE D, CIPRO R, et al. Toward the III-V/Si co-integration by controlling the biatomic steps on hydrogenated Si(001)[J]. Applied Physics Letters, 2016, 109(25): 253103.

    [28] [28] BARRETT C S C, ATASSI A, KENNON E L, et al. Dissolution of antiphase domain boundaries in GaAs on Si(001) via post-growth annealing[J]. Journal of Materials Science, 2019, 54(9): 7028-7034.

    [29] [29] AKIYAMA M, KAWARADA Y, KAMINISHI K. Growth of single domain GaAs layer on (100)-oriented Si substrate by MOCVD[J]. Japanese Journal of Applied Physics, 1984, 23(11A): L843.

    [30] [30] JOSHKIN V, ORLIKOVSKY A, OKTYABRSKY S, et al. Biaxial compression in GaAs thin films grown on Si[J]. Journal of Crystal Growth, 1995, 147(1): 13-18.

    [31] [31] WANG Y F, WANG Q, JIA Z G, et al. Three-step growth of metamorphic GaAs on Si (001) by low-pressure metal organic chemical vapor deposition[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2013, 31(5): 051211.

    [32] [32] LEE J W, SHICHIJO H, TSAI H L, et al. Defect reduction by thermal annealing of GaAs layers grown by molecular beam epitaxy on Si substrates[J]. Applied Physics Letters, 1987, 50(1): 31-33.

    [33] [33] YAMAGUCHI M, NISHIOKA T, SUGO M. Analysis of strained-layer superlattice effects on dislocation density reduction in GaAs on Si substrates[J]. Applied Physics Letters, 1989, 54(1): 24-26.

    [34] [34] WANG Z H, WEI W Q, FENG Q, et al. InAs/GaAs quantum dot single-section mode-locked lasers on Si (001) with optical self-injection feedback[J]. Optics Express, 2021, 29(2): 674-683.

    [35] [35] TANG M C, CHEN S M, WU J, et al. Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(6): 50-56.

    [36] [36] HAYAFUJI N, KIZUKI H, MIYASHITA M, et al. Crack propagation and mechanical fracture in GaAs-on-Si[J]. Japanese Journal of Applied Physics, 1991, 30(3R): 459.

    [37] [37] SARAVANAN S, HAYASHI Y, SOGA T, et al. Growth and characterization of GaAs epitaxial layers on Si/porous Si/Si substrate by chemical beam epitaxy[J]. Journal of Applied Physics, 2001, 89(9): 5215-5218.

    [38] [38] NISHIMURA T, KADOIWA K, MIYASHITA M, et al. Crack-free and low dislocation density GaAs-on-Si grown by 2-reactor MOCVD system[J]. Journal of Crystal Growth, 1991, 112(4): 791-796.

    [39] [39] TAKANO Y, KURURI T, KUWAHARA K, et al. Residual strain and threading dislocation density in InGaAs layers grown on Si substrates by metalorganic vapor-phase epitaxy[J]. Applied Physics Letters, 2000, 78(1): 93-95.

    [40] [40] SARAVANAN S, ADACHI M, SATOH N, et al. Stress reduction and structural quality improvement due to in doping in GaAs/Si[J]. Materials Science and Engineering: B, 2000, 68(3): 166-170.

    [41] [41] HUANG H, REN X M, LV J H, et al. Crack-free GaAs epitaxy on Si by using midpatterned growth: application to Si-based wavelength-selective photodetector[J]. Journal of Applied Physics, 2008, 104(11): 113114.

    [42] [42] OH S, JUN D H, SHIN K W, et al. Control of crack formation for the fabrication of crack-free and self-isolated high-efficiency gallium arsenide photovoltaic cells on silicon substrate[J]. IEEE Journal of Photovoltaics, 2016, 6(4): 1031-1035.

    [43] [43] LEE A, JIANG Q, TANG M C, et al. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities[J]. Optics Express, 2012, 20(20): 22181-22187.

    [44] [44] LIU A L, ZHANG C, SNYDER A, et al. MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon[J]. Journal of Vacuum Science & Technology B, 2014, 32(2): 2C108.

    [45] [45] WANG J, REN X M, DENG C, et al. Extremely low-threshold current density InGaAs/AlGaAs quantum-well lasers on silicon[J]. Journal of Lightwave Technology, 2015, 33(15): 3163-3169.

    [46] [46] LIU Z L, LIU H, JIANG C, et al. Improved performance of InGaAs/AlGaAs quantum well lasers on silicon using InAlAs trapping layers[J]. Optics Express, 2023, 31(5): 7900-7906.

    [47] [47] ZHOU Z C, OU X P, FANG Y T, et al. Prospects and applications of on-chip lasers[J]. eLight, 2023, 3(1): 1.

    [48] [48] ZHU S, SHI B, LI Q, et al. 1.5 μm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon[J]. Applied Physics Letters, 2018, 113(22): 221103.

    [49] [49] WEI W Q, FENG Q, GUO J J, et al. InAs/GaAs quantum dot narrow ridge lasers epitaxially grown on SOI substrates for silicon photonic integration[J]. Optics Express, 2020, 28(18): 26555-26563.

    [50] [50] CHEN W R, ZHU L N, WU G F, et al. Theoretical and experimental study on epitaxial growth of antiphase boundary free GaAs on hydrogenated on-axis Si(001) surfaces[J]. Journal of Physics D Applied Physics, 2021, 54(44): 445102.

    [51] [51] LI K S, YANG J J, LU Y, et al. Inversion boundary annihilation in GaAs monolithically grown on on-axis silicon (001)[J]. Advanced Optical Materials, 2020, 8(22): 2000970.

    [52] [52] LI Q, NG K W, LAU K M. Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon[J]. Applied Physics Letters, 2015, 106(7): 072105.

    [53] [53] WAN Y T, LI Q, GENG Y, et al. InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 μm band[J]. Applied Physics Letters, 2015, 107(8): 081106.

    [54] [54] LIU A Y, PETERS J, HUANG X, et al. Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si[J]. Optics Letters, 2017, 42(2): 338-341.

    [55] [55] JUNG D, NORMAN J, KENNEDY M J, et al. High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si[J]. Applied Physics Letters, 2017, 111(12): 122107.

    [56] [56] CHEN S, LIAO M, TANG M, et al. Electrically pumped continuous-wave 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates[J]. Optics Express, 2017, 25(5): 4632-4639.

    [57] [57] SHANG C, WAN Y T, NORMAN J C, et al. Low-threshold epitaxially grown 1.3-μm InAs quantum dot lasers on patterned (001) Si[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6): 1-7.

    [58] [58] SHANG C, HUGHES E, WAN Y, et al. High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters[J]. Optica, 2021, 8(5): 749-754.

    [59] [59] WANG J, LIU Z L, LIU H, et al. High slope-efficiency quantum-dot lasers grown on planar exact silicon (001) with asymmetric waveguide structures[J]. Optics Express, 2022, 30(7): 11563-11571.

    [60] [60] ALESHKIN V Y, BAIDUS N V, DUBINOV A A, et al. Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si(001) substrate[J]. Applied Physics Letters, 2016, 109(6): 061111.

    [61] [61] SHI B, ZHAO H W, WANG L, et al. Continuous-wave electrically pumped 1550 nm lasers epitaxially grown on on-axis (001) silicon[J]. Optica, 2019, 6(12): 1507-1514.

    [62] [62] JIANG C, LIU H, WANG J, et al. Demonstration of room-temperature continuous-wave operation of InGaAs/AlGaAs quantum well lasers directly grown on on-axis silicon (001)[J]. Applied Physics Letters, 2022, 121(6): 061102.

    [63] [63] LI Y, SALVIATI G, BONGERS M M G, et al. On the formation of antiphase domains in the system of GaAs on Ge[J]. Journal of Crystal Growth, 1996, 163(3): 195-202.

    [65] [65] ZHONG L, HOJO A, AIBA Y, et al. Atomic steps on a silicon (001) surface tilted toward an arbitrary direction[J]. Applied Physics Letters, 1996, 68(13): 1823-1825.

    [66] [66] BRCKNER S, DSCHER H, KLEINSCHMIDT P, et al. Anomalous double-layer step formation on Si(100) in hydrogen process ambient[J]. Physical Review B, Condensed Matter, 2012, 86(19): 195310.

    [67] [67] PAN S H, SHEN H, HANG Z, et al. Photoreflectance study of narrow-well strained-layer InxGa1-xAs/GaAs coupled multiple-quantum-well structures[J]. Physical Review B, Condensed Matter, 1988, 38(5): 3375-3382.

    [69] [69] WANG J, HU H Y, YIN H Y, et al. 1.3 μm InAs/GaAs quantum dot lasers on silicon with GaInP upper cladding layers[J]. Photonics Research, 2018, 6(4): 321-325.

    [70] [70] JUNG C, JGER R, GRABHERR M, et al. 4.8 mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes[J]. Electronics Letters, 1997, 33(21): 1790.

    [71] [71] FENG M X, ZHANG S M, JIANG D S, et al. Thermal analysis of GaN laser diodes in a package structure[J]. Chinese Physics B, 2012, 21(8): 084209.

    [72] [72] WANG Z Q, SHENG Z, LI H, et al. A thermal-optimal design of SOI-integrated microdisk lasers[J]. Optical and Quantum Electronics, 2015, 47(2): 453-461.

    [73] [73] DYMENT J C, CHENG Y C, SPRINGTHORPE A J. Temperature dependence of spontaneous peak wavelength in GaAs and Ga1-xAlxAs electroluminescent layers[J]. Journal of Applied Physics, 1975, 46(4): 1739-1743.

    [75] [75] JUNG D, ZHANG Z Y, NORMAN J, et al. Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency[J]. ACS Photonics, 2018, 5(3): 1094-1100.

    [76] [76] WAN Y T, SHANG C, NORMAN J, et al. Low threshold quantum dot lasers directly grown on unpatterned quasi-nominal (001) Si[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(2): 1-9.

    Tools

    Get Citation

    Copy Citation Text

    WANG Jun, GE Qing, LIU Shuaicheng, MA Bojie, LIU Zhuoliang, ZHAI Hao, LIN Feng, JIANG Chen, LIU Hao, LIU Kai, YANG Yisu, WANG Qi, HUANG Yongqing, REN Xiaomin. Investigation of Epitaxial III-V Quantum Well and Quantum Dot Lasers on Silicon for Monolithic Integration[J]. Journal of Synthetic Crystals, 2023, 52(5): 766

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 6, 2023

    Accepted: --

    Published Online: Jun. 11, 2023

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics