Acta Photonica Sinica, Volume. 54, Issue 3, 0309001(2025)
Research Progress of Multiplexing Technology for Holographic Data Storage(Invited)
[2] MAIMAN T H. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).
[3] VAN HEERDEN P J. Theory of optical information storage in solids[J]. Applied Optics, 2, 393-400(1963).
[4] LEITH E N, KOZMA A, UPATNIEKS J et al. Holographic data storage in three-dimensional media[J]. Applied Optics, 5, 1303-1311(1966).
[5] LEITH E N, UPATNIEKS J. Reconstructed wavefronts and communication theory[J]. Journal of the Optical Society of America A, 52, 1123-1130(1962).
[6] LEITH E N, UPATNIEKS J. Wavefront reconstruction with diffused illumination and three-dimensional objects[J]. Journal of the Optical Society of America A, 54, 1295-1301(1964).
[7] KATANO Y, NOBUKAWA T, MUROI T et al. CNN-based demodulation for a complex amplitude modulation code in holographic data storage[J]. Optical Review, 28, 662-672(2021).
[8] KUROKAWA S, YOSHIDA S. Demodulation scheme for constant-weight codes using convolutional neural network in holographic data storage[J]. Optical Review, 29, 375-381(2022).
[9] ZHAO Y, WU F, LIN X et al. Phase-distribution-aware adaptive decision scheme to improve the reliability of holographic data storage[J]. Optics Express, 30, 16655-16668(2022).
[10] BUNSEN M, UMETSU S, TAKABAYASHI M et al. Method of phase and amplitude modulation/demodulation using datapages with embedded phase-shift for holographic data storage[J]. Japanese Journal of Applied Physics, 52, 09(2013).
[11] XIONG Bingheng. Some processing schemes for high quality holograms using silver halide materials[J]. Optical Technology, 4, 7-11(1996).
[12] TAO Shiquan, WANG Dayong, WANG Zhuqing et al[M]. Holographicdatastorage(1998).
[13] MOK F H, TACKITT M C, STOLL H M. Storage of 500 high-resolution holograms in a LiNbO3 crystal[J]. Optics Letters, 16, 605-607(1991).
[14] MOK F H, PSALTIS D, BURR G W. Spatially-and angle-multiplexed holographic random access memory[C], 1773, 334-345(1992).
[15] HEANUE F, BASHAW M C, HESSELINK L. Volume holographic storage and retrieval of digital data[J]. Science, 265, 749-752(1994).
[16] BURR G W, JEFFERSON C M, COUFAL H et al. Volume holographic data storage at an areal density of 250 gigepixels/in2[J]. Optics Letters, 26, 444-446(2001).
[17] THOMAAS J, CHRISTENSON C W, BANCHE P A et al. Photoconducting polymers for photorefractive 3D display applications[J]. Chemistry of Materials, 23, 416-429(2011).
[18] BLANCHE P A, BABLUMIAN A, VOORAKARANAM R et al. Holographic three-dimensional telepresence using large-area photorefractive polymer[J]. Nature, 468, 80-83(2010).
[19] TSUTSUMI N, KINASHI K, SAKAI W et al. Real-time three-dimensional holographic display using a monolithic organic compound dispersed film[J]. Optical Materials Express, 2, 1003-1010(2012).
[20] HATA E J, MITSUBE K, MOMOSE K et al. Holographic nanoparticle-polymer composites based on step-growth thiolene photopolymerization[J]. Optical Materials Express, 1, 207-222(2011).
[21] GOLDENBERG L M, SAKHNO O V, SMIRNOVA T N et al. Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation[J]. Chemistry of Materials, 20, 4619-4627(2008).
[22] SUZUKI N, TOMITA Y, KOJIMA T. Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films[J]. Applied Physics Letters, 81, 4121-4123(2002).
[23] ZHOU H J, MOROZOV V, NEFF J. Characterization of Dupont photopolymers in infrared light for free-space optical interconnects[J]. Applied Optics, 34, 7457-7459(1995).
[24] RHEE U, CAULFIELD H, SHAMIR J et al. Characteristics of the Dupont photopolymer for angularly multiplexed page-oriented holographic memories[J]. Optical Engineering, 32, 1839-1842(1993).
[25] ORLOV S S, BJORNSON E, PHILLIPS W et al. High transfer rate (1Gbit/s) high-capacity holographic disk digital data storage system[C], 190-191(2000).
[26] WALDMAN D A, BUTLER C J, RAGUIN D H. CROP holographic storage media for optical data storage at greater than 100bits/μm2[C], 5216, 10-25(2003).
[27] SCHNOES M, IHAS B, DHAR L et al. Photopolymer use for holographic data storage[C], 4988, 68-76(2003).
[28] FANG X, REN H, GU M. Orbital angular momentum holography for high-security encryption[J]. Nature Photonics, 14, 102-108(2020).
[29] FANG X, YANG H, YAO W et al. High-dimensional orbital angular momentum multiplexing nonlinear holography[J]. Advanced Photonics, 3, 015001(2021).
[30] FANG X, WANG H, YANG H et al. Multichannel nonlinear holography in a two-dimensional nonlinear photonic crystal[J]. Physical Review A, 102, 043506(2020).
[31] ABOURADDY A F, SALEH B E A, SERGIENKO A V et al. Quantum holography[J]. Optics Express, 9, 498-505(2001).
[32] LUGIATO L A, GATTI A, BRAMBILLA E et al. Quantum imaging[J], 4, S176(2002).
[33] YAN Z, LI P, GAO J et al. Anisotropic nanostructure generated by a spatial-temporal manipulated picosecond pulse for multidimensional optical data storage[J]. Optics Letters, 46, 5485-5488(2021).
[34] CHEBEN P, CALVO M L. A photopolymerizable glass with diffraction efficiency near 100% for holographic storage[J]. Applied Physics Letters, 78, 1490-1492(2001).
[35] MOK F H. Angle-multiplexed storage of 5 000 holograms in lithium niobate[J]. Optics Letters, 18, 915-917(1993).
[36] CURTIS K, PU A, PSALTIS D. Method for holographic storage using peristrophic multiplexing[J]. Optics Letters, 19, 993-994(1994).
[37] ANDERSON K, CURTIS K. Polytopic multiplexing[J]. Optics Letters, 29, 1402-1404(2004).
[38] KINOSHITA N, MUROI T, ISHII N et al. Half-data-page insertion method for increasing recording density in angular multiplexing holographic memory[J]. Applied Optics, 50, 2361-2369(2011).
[39] IDE T. Formularization and simulation of Bragg selectivity of readout signals in angular-multiplexing holographic data storage[J]. Applied Optics, 55, 2664-2674(2016).
[40] HOSAKA M, ISHII T, HOSHIZAWA T. Volume-recorded hologram modeling, point-spread function analysis, and segmented adaptive equalization for holographic data storage[J]. Applied Optics, 58, 4678-4686(2019).
[41] HORIMAI H, TAN X, LI J. Collinear holography[J]. Applied Optics, 44, 2575-2579(2005).
[42] NOBUKAWA T, NOMURA T. Digital super-resolution holographic data storage based on Hermitian symmetry for achieving high areal density[J]. Optics Express, 25, 1326-1338(2017).
[43] HORIMAI H, TAN X. Advanced collinear holography[J]. Optical Review, 12, 90-92(2005).
[44] SAITA Y, NOMURA T, NITANAI E et al. Design of reference pattern and input phase mask for coaxial holographic memory[J]. Japanese Journal of Applied Physics, 50, 1489-1496(2011).
[45] NOBUKAWA T, NOMURA T. Design of high-resolution and multi-level reference pattern for improvement of both light utilization efficiency and signal-to-noise ratio in coaxial holographic data storage[J]. Applied Optics, 53, 3773-3781(2014).
[46] BETIN A Y, BOBRINEV V I, ODINOKOV S B et al. Holographic memory optical system based on computer-generated Fourier holograms[J]. Applied Optics, 52, 8142-8145(2013).
[47] BETIN A Y, BOBRINEV V I, DONCHENKO S S et al. Holographic memory system based on projection recording of computer-generated 1D Fourier holograms[J]. Applied Optics, 53, 6591-6597(2014).
[48] NOBUKAWA T, NOMURA T. Shift multiplexing with a spherical wave in holographic data storage based on a computer-generated hologram[J]. Applied Optics, 56, F31-F36(2017).
[49] YONEDA N, SAITA Y, KOMURO K et al. Transport-of-intensity holographic data storage based on a computer-generated hologram[J]. Applied Optics, 57, 8836-8840(2018).
[50] YONEDA N, SAITA Y, NOMURA T. Binary computer-generated-hologram-based holographic data storage[J]. Applied Optics, 58, 3083-3090(2019).
[51] ZLOKAZOV E Y. Transparency function presentation of computer generated Fourier holograms for complex data page restoration[J]. Japanese Journal of Applied Physics, 58, SKKD04(2019).
[52] YONEDA N, SAITA Y, NOMURA T. Computer-generated-hologram-based holographic data storage using common-path off-axis digital holography[J]. Optics Letters, 45, 2796-2799(2020).
[53] SAITA Y, MATSUMOTO A, YONEDA N et al. Multiplexed recording based on the reference wave correlation for computer-generated holographic data storage[J]. Optical Review, 27, 391-398(2020).
[54] TAKABAYASHI M, OKAMOTO A. Self-referential holography and its applications to data storage and phase-to-intensity conversion[J]. Optics Express, 21, 3669-3681(2013).
[55] TAKABAYASHI M, ETO T, OKAMOTO T. Numerical simulations on the focus-shift multiplexing technique for self-referential holographic data storage[J]. Optical Review, 23, 987-996(2016).
[56] CURTIS K, DHAR L, HILL A J et al[M]. Holographic data storage from theory to practical systems(2010).
[57] HESSELINK L, ORLOV S S, BASHAW M C. Holographic data storage systems[J]. Proceedings of the IEEE, 92, 1231-1280(2004).
[58] TAN X, MATOBA O, SHIMURA T et al. Improvement in holographic storage capacity by use of double-random phase encryption[J]. Applied Optics, 40, 4721-4727(2001).
[59] ZHAI Q, TAO S, ZHANG T et al. Investigation on mechanism of multiple holographic recording with uniform diffraction efficiency in photopolymers[J]. Optics Express, 17, 10871-10880(2009).
[60] XU K, HUANG Y, LIN X et al. Unequally spaced four levels phase encoding in holographic data storage[J]. Optical Review, 23, 1004-1009(2016).
[61] LIN X, HAO J Y, ZHENG M J et al. Optical holographic data storage: the time for new development[J]. Opto-Electronic Engineering, 46, 180642(2019).
[62] MUROI T, KATANO Y, KINOSHITA N et al. Dual-page reproduction to increase the data transfer rate in holographic memory[J]. Optics Letters, 42, 2287-2290(2017).
[63] NOMURA T, MIKAN S, MORIMOTO Y et al. Secure optical data storage with random phase key codes by use of a configuration of a joint transform correlator[J]. Applied Optics, 42, 1508-1514(2003).
[64] WATANABE T, WATANABE M. Robust holographic storage system design[J]. Optics Express, 19, 24147-24158(2011).
[65] NAKAMURA Y, TAKAGI H, LIM P B et al. Magnetic volumetric hologram memory with magnetic garnet[J]. Optics Express, 22, 16439-16444(2014).
[66] WU Shenghan, WANG Zheng, CAO Liangcai et al. Volume holographic display technology based on angular multiplexing[J]. Journal of Applied Optics, 38, 6(2017).
[67] CAO L, WANG Z, ZHANG H et al. Volume holographic printing using unconventional angular multiplexing for three-dimensional display[J]. Applied Optics, 55, 6046-6051(2016).
[68] RAKULJIC G A, LEYVA V, YARIV A. Optical data storage by using orthogonal wavelength-multiplexed volume holograms[J]. Optics Letters, 17, 1471-1473(1992).
[69] DENZ C, PAULIAT G, ROOSEN G et al. Volume hologram multiplexing using a deterministic phase encoding method[J]. Optical Communications, 85, 171-176(1991).
[70] TAO Shiquan. New progress of high density optical holographic storage technology[J]. Physics, 26, 79-84(1997).
[71] DENZ C, PAULIAT G, ROOSEN G et al. Potentialities and limitations of hologram multiplexing by using the phase-encoding technique[J]. Applied Optics, 31, 5700-5705(1992).
[72] PSALTIS D, PU A, LEVENE M et al. Holographic storage using shift multiplexing[J]. Optics Letters, 20, 782-784(1995).
[73] ORLOV S S, PHILLIPS W, BJORNSON E et al. High transfer rate (1 Gbit/sec) high-capacity holographic disk digital data storage system[C], 71-77(2000).
[74] YU Y W, TENG T C, HSIEH S C et al. Shifting selectivity of collinear volume holographic storage[J]. Optics Communications, 283, 3895-3900(2010).
[75] ETO T, TAKABAYASHI M, OKAMOTO A et al. Numerical simulations on inter-page crosstalk characteristics in three-dimensional shift multiplexed self-referential holographic data storage[J]. Japanese Journal of Applied Physics, 55, 08RD01(2016).
[76] BARBASTATHIS G, LEVENE M, PSALTIS D. Shift multiplexing with spherical reference waves[J]. Applied Optics, 35, 2403-2417(1996).
[77] HE Q S, WANG J N, WANG J G et al. Dynamic speckle multiplexing scheme in volume holographic data storage and its realization[J]. Optics Express, 11, 366-370(2003).
[78] ZANG J, WU A, LIU Y et al. Characteristics of volume polarization holography with linear polarization light[J]. Optical Review, 22, 829-831(2015).
[79] HUANG Z, WU C, CHEN Y et al. Faithful reconstruction in orthogonal elliptical polarization holography read by different polarized waves[J]. Optics Express, 28, 23679-23689(2020).
[80] WANG J, QI P, CHEN Y et al. Faithful reconstruction of linear polarization wave without dielectric tensor constraint[J]. Optics Express, 29, 14033-14040(2021).
[81] QI P, WANG J, SONG H et al. Faithful reconstruction condition of linear polarization holography[J]. Acta Optica Sinica, 40, 2309001(2020).
[82] HONG Y, KANG G, ZANG J et al. Investigation of faithful reconstruction in nonparaxial approximation polarization holography[J]. Applied Optics, 56, 10024-10029(2017).
[83] WU A, KANG G, ZANG J et al. Null reconstruction of orthogonal circular polarization hologram with large recording angle[J]. Optics Express, 23, 8880-8887(2015).
[84] WANG J, KANG G, WU A et al. Investigation of the extraordinary null reconstruction phenomenon in polarization volume hologram[J]. Optics Express, 24, 1641-1647(2016).
[85] SHAO L, ZANG J, FAN F et al. Investigation of the null reconstruction effect of an orthogonal elliptical polarization hologram at a large recording angle[J]. Applied Optics, 58, 9983-9989(2019).
[86] ZHANG Y, KANG G, ZANG J et al. Inverse polarizing effect of an elliptical- polarization recorded hologram at a large cross angle[J]. Optics Letters, 41, 4126-4129(2016).
[87] ZANG J, KANG G, LI P et al. Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography[J]. Optics Letters, 42, 1377-1380(2017).
[88] ZANG J, FAN F, LIU Y et al. Four-channel volume holographic recording with linear polarization holography[J]. Optics Letters, 44, 4107-4110(2019).
[89] XU X, ZHENG S, KE S et al. Holographic multiplexing recording with an orthogonal polarized array[J]. Optics Express, 32, 36405-36419(2024).
[90] ZHENG S, TAN J, LIU H et al. Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording[J]. Opto-Electronic Advances, 7, 230180(2024).
[91] ZHENG S, TAN J, XU X et al. Optical polarized orthogonal matrix[J]. Photonics Research, 13, 373-381(2025).
[92] YANG Y, QI P, YUAN X et al. Compact detector for vector vortex beams by polarization holography[J]. Optics Express, 32, 43134-43145(2024).
[93] QI P, YUAN X, ZHANG D et al. Comprehensive design of all-optical logic devices utilizing polarization holography[J]. Optics Express, 32, 30419-30435(2024).
[94] QI P, WANG J, YANG Y et al. Simultaneously characterize Stokes parameters of lightwave utilizing tensor polarization holography theory[J]. Optics Express, 30, 47264-47279(2022).
[95] ZAHNG Y, ZHANG Q, JIANG X et al. Circular polarization detector based on polarization holography[J]. Optics Letters, 47, 5941-5944(2022).
[96] LI J, HUNG Y, KULCE O et al. Polarization multiplexed diffractive computing: all-optical implementation of a group of linear transformations through a polarization-encoded diffractive network[J]. Light: Science & Applications, 11, 153(2022).
[97] JIA W, CHEN Z, WEN F J et al. Coaxial holographic encoding based on pure phase modulation[J]. Applied Optics, 50, H10-H15(2011).
[98] TANAKA K, HARA M, TOKUYAMA K et al. Improved performance in coaxial holographic data recording[J]. Optics Express, 15, 16196-16209(2007).
[99] QIU X, WANG K, LIN X et al. Combination compensation method to improve the tolerance of recording medium shrinkage in collinear holographic storage[J]. Photonics, 9, 149(2022).
[100] HORIMAI H, TAN X D, LI J. Colinear holography[J]. Applied Optics, 44, 2575-2579(2005).
[101] KIMURA K. Improvement of the optical signal-to-noise ratio in common-path holographic storage by use of a polarization-controlling media structure[J]. Optics Letters, 30, 878-880(2005).
[102] TRAUTNER H, HOSFELD W, KNITEL J et al. Test of key elements for common path holography[C], 5939, 593903(2005).
[103] SHIH H F. Integrated optical unit design for the collinear holographic storage system[J]. IEEE Transactions on Magnetics, 43, 948-950(2007).
[104] LIU J, HORIMAI H, LIN X et al. Phase modulated high density collinear holographic data storage system with phase-retrieval reference beam locking and orthogonal reference encoding[J]. Optics Express, 26, 3828-3838(2018).
[105] LOHMANN A W. On Moiré fringes as Fourier test objects[J]. Applied Optics, 5, 669-670(1966).
[106] BROWN B R, LOHMANN A W. Complex spatial filtering with binary masks[J]. Applied Optics, 5, 967-969(1966).
[107] WATERS J P. Holographic image synthesis utilizing theoretical methods[J]. Applied Physics Letters, 9, 405-407(1967).
[108] LESEM L B, HIRSCH P M, JORDAN J A. The kinoform: a new wavefront reconstruction device[J]. IBM Journal of Research and Development, 13, 150-155(1969).
[109] LEE W H. Sampled Fourier transform hologram generated by computer[J]. Applied Optics, 9, 639-643(1970).
[110] ODINOKOV S B, ZLOKAZOV E Y, BETIN A Y et al. Application of optoelectronic micro-displays for holographic binary data recorder based on computer generated Fourier holograms[J]. Optical Memory and Neural Networks, 25, 255-261(2016).
[111] ODINOKOV S, ZLOKAZOV E, DONCHENKO S et al. Optical memory system based on incoherent recorder and coherent reader of multiplexed computer generated one-dimensional Fourier transform holograms[J]. Japanese Journal of Applied Physics, 56, 09(2017).
[112] TAKABAYASHI M, OKAMOTO A, ETO T et al. Shift- multiplexed self-referential holographic data storage[J]. Applied Optics, 53, 4375-4381(2014).
[113] TAKABAYASHI M, OKAMOTO A, ETO T et al. Recording procedures for high-quality signal readout in self-referential holographic data storage[J]. Applied Optics, 54, 5167-5174(2015).
[114] TOMIOKA R, TAKABAYASHI M. Numerical simulations on optoelectronic deep neural network hardware based on self-referential holography[J]. Optical Review, 30, 387-396(2023).
[115] TOISHI M, HARA M, TANAKA K et al. Novel encryption method using multi reference patterns in coaxial holographic data storage[J]. Japanese Journal of Applied Physics, 46, 3775-3781(2007).
[116] SONG H, LI J, LIU H et al. Reducing the crosstalk in collinear holographic data storage systems based on random position orthogonal phase-coding reference[J]. Photonics, 10, 1160(2023).
[117] SONG H, LI J, JIN J et al. Optical router based on a phase-coding multiplexed collinear holographic storage system[J]. Applied Optics, 63, 5679-5683(2024).
[118] SAITA Y, MATSUMOTO A, YONEDA N et al. Multiplexed recording based on the reference wave correlation for computer‐generated holographic data storage[J]. Optical Review, 27, 391-398(2020).
[119] NOBUKAWA T, WANI Y, NOMURA T. Multiplexed recording with uncorrelated computer-generated reference patterns in coaxial holographic data storage[J]. Optics Letters, 40, 2161-2164(2015).
[120] WEI Haoyun. DualGchannelvolumeholographicstorageusingcationicringGopeningpolymerizationphotopolymer[D](2006).
[121] GU Huarong. Channelprocesingtechnologiesinvolumeholographicdatastoragesystems[D](2009).
[122] LI J, CAO L, GU H et al. Orthogonal-reference-pattern-modulated shift multiplexing for collinear holographic data storage[J]. Optics Letters, 37, 936-938(2012).
[123] KANG Y, KIM K, LEE B. Angular and speckle multiplexing of photorefractive holograms by use of fiber speckle patterns[J]. Applied Optics, 37, 6969-6971(1998).
[124] ZHANG J, YOSHIKADO S, ARUGA T. Shift multiplexing for holographic storage system using fiber bundle referencing[J]. Applied Physics Letters, 82, 25-27(2003).
[125] HAO J, LIN X, LIN Y et al. Lensless complex amplitude demodulation based on deep learning in holographic data storage[J]. Opto-Electronic Advances, 6, 220157(2023).
[126] LIN X, HUANG Y, LI Y et al. Four-level phase pair encoding and decoding with single interferometric phase retrieval for holographic data storage[J]. Chinese Optics Letters, 16, 032101(2018).
[127] HAO J, REN Y, ZHANG Y et al. Non-interferometric phase retrieval for collinear phase-modulated holographic data storage[J]. Optical Review, 27, 419-426(2020).
Get Citation
Copy Citation Text
Shujun ZHENG, Hongjie LIU, Xianmiao XU, Junchao JIN, Jinyu WANG, Dakui LIN, Yi YANG, Xiao LIN, Xiaodi TAN. Research Progress of Multiplexing Technology for Holographic Data Storage(Invited)[J]. Acta Photonica Sinica, 2025, 54(3): 0309001
Category: Holography
Received: Jan. 6, 2025
Accepted: Feb. 10, 2025
Published Online: Apr. 22, 2025
The Author Email: Yi YANG (yiyang@fjnu.edu.cn), Xiaodi TAN (xtan@fjnu.edu.cn)