Laser & Optoelectronics Progress, Volume. 61, Issue 24, 2415008(2024)
Three-Dimensional Reconstruction Methods for Obstacles in Complex Parking Scenarios
Fig. 8. Sample grid structured light dataset diagram. (a)‒(c) Projection imaging; (d)‒(f) noise projection imaging; (g)‒(i) depth image
Fig. 9. Sample dataset diagram. (a)‒(c) RGB image; (d)‒(f) depth image; (g)‒(i) 3D model
Fig. 10. Diagram of qualitative analysis of ablation experiment. (a) Input images; (b) base model output; (c) improved model 1; (d) improved model 2
Fig. 13. Depth prediction effect diagram. (a) Obstacle grid-based structured light imaging diagram; (b) labeled depth map; (c) predicted depth map
Fig. 14. Obstacle reconstruction effect diagram. (a) Obstacle type; (b) 3D ground truth; (c) reconstructed 3D model
Fig. 17. Actual vehicle obstacle 3D reconstruction effect diagram. (a) Traffic cone; (b)(c) traffic cone reconstruction effect; (d) warning board; (e)(f) warning board reconstruction effect
|
|
|
|
|
|
Get Citation
Copy Citation Text
Shidian Ma, Yuxuan Huang, Haobin Jiang, Aoxue Li, Mu Han, Chenxu Li. Three-Dimensional Reconstruction Methods for Obstacles in Complex Parking Scenarios[J]. Laser & Optoelectronics Progress, 2024, 61(24): 2415008
Category: Machine Vision
Received: Apr. 3, 2024
Accepted: May. 22, 2024
Published Online: Dec. 10, 2024
The Author Email: Shidian Ma (masd@ujs.edu.cn)
CSTR:32186.14.LOP241025