Laser & Optoelectronics Progress, Volume. 61, Issue 24, 2415008(2024)

Three-Dimensional Reconstruction Methods for Obstacles in Complex Parking Scenarios

Shidian Ma1、*, Yuxuan Huang1, Haobin Jiang1, Aoxue Li2, Mu Han3, and Chenxu Li2
Author Affiliations
  • 1Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, Jiangsu , China
  • 2School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu , China
  • 3School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu , China
  • show less
    Figures & Tables(23)
    U-Net model structure schematic
    RGB+Depth2Mesh model structure schematic
    Base network model structure schematic
    Dual feature parallel processing algorithm schematic
    Multi-scale feature fusion model
    Mesh construction module diagram
    Depth camera model schematic
    Sample grid structured light dataset diagram. (a)‒(c) Projection imaging; (d)‒(f) noise projection imaging; (g)‒(i) depth image
    Sample dataset diagram. (a)‒(c) RGB image; (d)‒(f) depth image; (g)‒(i) 3D model
    Diagram of qualitative analysis of ablation experiment. (a) Input images; (b) base model output; (c) improved model 1; (d) improved model 2
    Model training loss curve
    Validation set effect test diagram
    Depth prediction effect diagram. (a) Obstacle grid-based structured light imaging diagram; (b) labeled depth map; (c) predicted depth map
    Obstacle reconstruction effect diagram. (a) Obstacle type; (b) 3D ground truth; (c) reconstructed 3D model
    Actual vehicle installation of structured light sensor
    Experimental scene setup
    Actual vehicle obstacle 3D reconstruction effect diagram. (a) Traffic cone; (b)(c) traffic cone reconstruction effect; (d) warning board; (e)(f) warning board reconstruction effect
    • Table 1. Quantitative analysis results of ablation experiment

      View table

      Table 1. Quantitative analysis results of ablation experiment

      ModelEvaluation indexQuantized value
      Base ModelF(τ)59.735
      F(2τ)74.216
      dCD/m0.595
      dEMD/m1.393
      Base Model+U-NetF(τ)60.320
      F(2τ)75.401
      dCD/m0.599
      dEMD/m1.302
      Base Model+U-Net+Double input featuresF(τ)61.710
      F(2τ)76.110
      dCD/m0.583
      dEMD/m1.265
    • Table 2. Transverse comparison of experimental results(CD)

      View table

      Table 2. Transverse comparison of experimental results(CD)

      CategorydCD/m
      3D-R2N2PSGN3MRRGB+Depth2Mesh
      Plane0.8950.4300.4500.441
      Bench1.8910.6292.2680.625
      Cabinet0.7350.4392.5550.350
      Car0.8450.3332.2980.280
      Chair1.4320.6452.0840.613
      Monitor1.7070.7223.1110.731
      Lamp4.0091.1933.0131.218
      Speaker1.5070.7563.3430.748
      Firearm0.9930.4232.6410.451
      Couch1.1350.5493.5120.493
      Table1.1160.5172.3830.501
      Cellphone1.1370.4384.3660.451
      Watercraft1.2150.6332.1540.672
      Mean1.4450.5932.6290.583
    • Table 3. Transverse comparison of experimental results(EMD)

      View table

      Table 3. Transverse comparison of experimental results(EMD)

      CategorydEMD/m
      3D-R2N2PSGN3MRRGB+Depth2Mesh
      Plane0.6060.3967.4980.401
      Bench1.1361.11311.7660.901
      Cabinet2.5202.98617.0622.511
      Car1.6701.74711.6411.012
      Chair1.4661.94611.8091.108
      Monitor1.6671.89114.0971.290
      Lamp1.4241.22214.7411.501
      Speaker2.7323.49016.7202.801
      Firearm0.6880.39711.8890.380
      Couch2.1142.20714.8761.652
      Table1.6412.12112.8421.380
      Cellphone0.9121.01917.6490.711
      Watercraft0.9350.94511.4250.801
      Mean1.5011.65313.3861.265
    • Table 4. Quantitative values of depth prediction model

      View table

      Table 4. Quantitative values of depth prediction model

      Evaluation metricQuantitative value
      SSIM0.71
      PSNR30.06
    • Table 5. Quantitative values of self-built data set model

      View table

      Table 5. Quantitative values of self-built data set model

      Evaluation metricQuantitative value
      F(τ)72.338
      F(2τ)88.249
      dCD/m0.0069
      dEMD/m0.0138
    • Table 6. Actual vehicle verification result

      View table

      Table 6. Actual vehicle verification result

      ObstacleLength /mWidth /mHeight /m
      Physical traffic cone0.400.400.70
      Reconstruction traffic cone0.310.310.57
      Physical warning board0.440.580.62
      Reconstruction warning board0.380.530.53
    Tools

    Get Citation

    Copy Citation Text

    Shidian Ma, Yuxuan Huang, Haobin Jiang, Aoxue Li, Mu Han, Chenxu Li. Three-Dimensional Reconstruction Methods for Obstacles in Complex Parking Scenarios[J]. Laser & Optoelectronics Progress, 2024, 61(24): 2415008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Apr. 3, 2024

    Accepted: May. 22, 2024

    Published Online: Dec. 10, 2024

    The Author Email: Shidian Ma (masd@ujs.edu.cn)

    DOI:10.3788/LOP241025

    CSTR:32186.14.LOP241025

    Topics