Chinese Journal of Lasers, Volume. 51, Issue 5, 0501002(2024)

Hundred‑Watt‑Level Mid‑Infrared Random Fiber Laser Amplifier

Wangcheng Gao1, Rui Ma1, Xin Quan1, Yu Chen1, Dianyuan Fan1, and Jun Liu1,2、*
Author Affiliations
  • 1International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, Guangdong , China
  • 2Key Laboratory of High Power Laser and Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    References(39)

    [1] Turitsyn S K, Babin S A, El-Taher A E et al. Random distributed feedback fibre laser[J]. Nature Photonics, 4, 231-235(2010).

    [2] Churkin D V, Sugavanam S, Vatnik I D et al. Recent advances in fundamentals and applications of random fiber lasers[J]. Advances in Optics and Photonics, 7, 516-569(2015).

    [3] Gomes A S L, Moura A L, de Araújo C B et al. Recent advances and applications of random lasers and random fiber lasers[J]. Progress in Quantum Electronics, 78, 100343(2021).

    [4] Wang Z H, Yan P, Huang Y S et al. An efficient 4-kW level random fiber laser based on a tandem-pumping scheme[J]. IEEE Photonics Technology Letters, 31, 817-820(2019).

    [5] Zhang H W, Huang L, Song J X et al. Quasi-kilowatt random fiber laser[J]. Optics Letters, 44, 2613-2616(2019).

    [6] Wang Z N, Wu H, Fan M Q et al. High power random fiber laser with short cavity length: theoretical and experimental investigations[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 10-15(2015).

    [7] Vatnik I D, Churkin D V, Podivilov E V et al. High-efficiency generation in a short random fiber laser[J]. Laser Physics Letters, 11, 075101(2014).

    [8] Zhang L, Jiang H W, Yang X Z et al. Nearly-octave wavelength tuning of a continuous wave fiber laser[J]. Scientific Reports, 7, 42611(2017).

    [9] Wu H, Wang W Z, Li Y et al. Difference-frequency generation of random fiber lasers for broadly tunable mid-infrared continuous-wave random lasing generation[J]. Journal of Lightwave Technology, 40, 2965-2970(2022).

    [10] Leandro D, Rota-Rodrigo S, Ardanaz D et al. Narrow-linewidth multi-wavelength random distributed feedback laser[J]. Journal of Lightwave Technology, 33, 3591-3596(2015).

    [11] Zhang L, Wang C, Li Z Y et al. High-efficiency Brillouin random fiber laser using all-polarization maintaining ring cavity[J]. Optics Express, 25, 11306-11314(2017).

    [12] He J R, Song R, Tao Y et al. Supercontinuum generation directly from a random fiber laser based on photonic crystal fiber[J]. Optics Express, 28, 27308-27315(2020).

    [13] Ma R, Zhang W L, Wang S S et al. Simultaneous generation of random lasing and supercontinuum in a completely-opened fiber structure[J]. Laser Physics Letters, 15, 085111(2018).

    [14] Ma R, Rao Y J, Zhang W L et al. Backward supercontinuum generation excited by random lasing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 0901105(2018).

    [15] Fu Y, Zhu R C, Han B et al. 175-km repeaterless BOTDA with hybrid high-order random fiber laser amplification[J]. Journal of Lightwave Technology, 37, 4680-4686(2019).

    [16] Wu H, Han B, Wang Z N et al. Temporal ghost imaging with random fiber lasers[J]. Optics Express, 28, 9957-9964(2020).

    [17] Ma R, Rao Y J, Zhang W L et al. Multimode random fiber laser for speckle-free imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 0900106(2019).

    [18] Wu H, Wang Z N, He Q H et al. Common-cavity ytterbium/Raman random distributed feedback fiber laser[J]. Laser Physics Letters, 14, 065101(2017).

    [19] Ma R, Quan X, Wu H et al. 20 watt-level single transverse mode narrow linewidth and tunable random fiber laser at 1.5 µm band[J]. Optics Express, 30, 28795-28804(2022).

    [20] Quan X, Ma R, Wu H et al. Low threshold and high spectral purity 1.7 μm random fiber laser based on hybrid gain[J]. Optics & Laser Technology, 155, 108410(2022).

    [21] Mingareev I, Weirauch F, Olowinsky A et al. Welding of polymers using a 2 μm thulium fiber laser[J]. Optics & Laser Technology, 44, 2095-2099(2012).

    [22] Ren X Y, Dai H, Li D T et al. Mid-infrared electro-optic dual-comb spectroscopy with feedforward frequency stepping[J]. Optics Letters, 45, 776-779(2020).

    [23] Hardy L A, Wilson C R, Irby P B et al. Rapid thulium fiber laser lithotripsy at pulse rates up to 500 Hz using a stone basket[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 138-141(2014).

    [24] Hao Q, Zhu G S, Yang S et al. Mid-infrared transmitter and receiver modules for free-space optical communication[J]. Applied Optics, 56, 2260-2264(2017).

    [25] Zhang Z, Shen D Y, Boyland A J et al. High-power Tm-doped fiber distributed-feedback laser at 1943 nm[J]. Optics Letters, 33, 2059-2261(2008).

    [26] Yin K, Zhang B, Xue G H et al. High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm[J]. Optics Express, 22, 19947-19952(2014).

    [27] Li J F, Sun Z Y, Luo H Y et al. Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm[J]. Optics Express, 22, 5387-5399(2014).

    [28] Yin K, Zhu R Z, Zhang B et al. 300 W-level, wavelength-widely-tunable, all-fiber integrated thulium-doped fiber laser[J]. Optics Express, 24, 11085-11090(2016).

    [29] Zhang Q, Hou Y B, Wang X et al. 5 W ultra-low-noise 2 µm single-frequency fiber laser for next-generation gravitational wave detectors[J]. Optics Letters, 45, 4911-4914(2020).

    [30] Liu Y Z, Cao C, Xing Y B et al. 406 W narrow-linewidth all-fiber amplifier with Tm-doped fiber fabricated by MCVD[J]. IEEE Photonics Technology Letters, 31, 1779-1782(2019).

    [31] Ma R, Liu J, Fang Z Q et al. Mid-infrared random fiber laser assisted by the passive feedback[J]. Journal of Lightwave Technology, 39, 5089-5095(2021).

    [32] Jin X X, Lou Z K, Zhang H W et al. Random distributed feedback fiber laser at 2.1 μm[J]. Optics Letters, 41, 4923-4926(2016).

    [33] Wu H S, Wang P, Song J X et al. High power tunable mid-infrared optical parametric oscillator enabled by random fiber laser[J]. Optics Express, 26, 6446-6455(2018).

    [34] Wu H, Wang W Z, Hu B et al. Widely tunable continuous-wave visible and mid-infrared light generation based on a dual-wavelength switchable and tunable random Raman fiber laser[J]. Photonics Research, 11, 808-816(2023).

    [35] Tian Y, Yao T F, Zhou P et al. Numerical modeling and optimization of mid-infrared random distributed feedback fiber lasers[J]. Laser Physics, 28, 075104(2018).

    [36] Zhou L W, Hu Y Z, Zheng W L et al. Triple-wavelength thulium-doped fiber random laser based on random fiber grating[J]. Photonics, 10, 355(2023).

    [37] Hu Y Z, Zhu D C, Huang C Q et al. Study on thulium-doped fiber random laser based on random grating[J]. Chinese Journal of Lasers, 50, 0201002(2023).

    [38] Du X Y, Zhang H W, Ma P F et al. Kilowatt-level fiber amplifier with spectral-broadening-free property, seeded by a random fiber laser[J]. Optics Letters, 40, 5311-5314(2015).

    [39] Wang Z H, Yu W L, Tian J D et al. 5.1 kW tandem-pumped fiber amplifier seeded by random fiber laser with high suppression of stimulated Raman scattering[J]. IEEE Journal of Quantum Electronics, 57, 6800109(2021).

    Tools

    Get Citation

    Copy Citation Text

    Wangcheng Gao, Rui Ma, Xin Quan, Yu Chen, Dianyuan Fan, Jun Liu. Hundred‑Watt‑Level Mid‑Infrared Random Fiber Laser Amplifier[J]. Chinese Journal of Lasers, 2024, 51(5): 0501002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: May. 31, 2023

    Accepted: Aug. 14, 2023

    Published Online: Mar. 5, 2024

    The Author Email: Liu Jun (liu-jun-1987@live.cn)

    DOI:10.3788/CJL230874

    CSTR:32183.14.CJL230874

    Topics