Optics and Precision Engineering, Volume. 31, Issue 20, 2993(2023)

Indoor self-supervised monocular depth estimation based on level feature fusion

Deqiang CHENG1, Huaqiang ZHANG1, Qiqi KOU2, Chen LÜ1, and Jiansheng QIAN1、*
Author Affiliations
  • 1School of Information and Control Engineering, University of Mining and Technology, Xuzhou 226, China
  • 2School of Computer Science and Technology, University of Mining and Technology, Xuzhou 1116, China
  • show less
    References(54)

    [1] ZHANG S G, CHEN Y F, ZHANG L J et al. Study on robot grasping system of SSVEP-BCI based on augmented reality stimulus[J]. Tsinghua Science and Technology, 28, 322-329(2022).

    [2] LIN D H, FIDLER S, URTASUN R. Holistic Scene Understanding for 3D Object Detection with RGBD Cameras[C], 1417-1424(1).

    [3] RASOULI A, TSOTSOS J K. Autonomous vehicles that interact with pedestrians: a survey of theory and practice[J]. IEEE Transactions on Intelligent Transportation Systems, 21, 900-918(2019).

    [5] RANFTL R, VINEET V, CHEN Q F et al. Dense Monocular Depth Estimation in Complex Dynamic Scenes[C], 4058-4066(27).

    [6] [6] 伍锡如, 薛其威. 基于激光雷达的无人驾驶系统三维车辆检测[J]. 光学 精密工程, 2022, 30(4): 489-497. doi: 10.37188/OPE.20223004.0489WUX R, XUEQ W. 3D vehicle detection for unmanned driving systerm based on lidar[J]. Opt. Precision Eng., 2022, 30(4): 489-497. (in Chinese). doi: 10.37188/OPE.20223004.0489

    [7] EIGEN D, PUHRSCH C, FERGUS R. Depth map prediction from a single image using a multi-scale deep network[C], 2366-2374(13).

    [8] GODARD C, AODHA OMAC, BROSTOW G J. Unsupervised monocular depth estimation with left-right consistency[C], 6602-6611(21).

    [9] ZHOU T H, BROWN M, SNAVELY N et al. Unsupervised learning of depth and ego-motion from video[C], 6612-6619(21).

    [10] GODARD C, AODHA OMAC, FIRMAN M et al. Digging into self-supervised monocular depth estimation[C], 3827-3837.

    [11] GUIZILINI V, AMBRUS R, PILLAI S et al. 3D Packing for self-supervised monocular depth estimation[C], 2482-2491(13).

    [12] YU Z H, JIN L, GAO S H[M]. P2Net: Patch-Match and Plane-Regularization for Unsupervised Indoor Depth Estimation, 206-222(2020).

    [13] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving?[C], 3354-3361(16).

    [14] SAXENA A, SUN M, NG A Y. Make3D: learning 3D scene structure from a single still image[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 824-840(2009).

    [15] EIGEN D, FERGUS R. Predicting Depth, Surface normals and semantic labels with a common multi-scale convolutional architecture[C], 2650-2658(7).

    [16] LIU F Y, SHEN C H, LIN G S et al. Learning depth from single monocular images using deep convolutional neural fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 2024-2039(2016).

    [17] KIM S, PARK K, SOHN K et al[M]. Unified Depth Prediction and Intrinsic Image Decomposition From A Single Image Via Joint Convolutional Neural Fields, 143-159(2016).

    [18] FU H, GONG M M, WANG C H et al. Deep ordinal regression network for monocular depth estimation[C], 2002-2011(18).

    [19] WOFK D, MA F C, YANG T J et al. FastDepth: fast monocular depth estimation on embedded systems[C], 6101-6108(20).

    [20] SHU C, YU K, DUAN Z X et al[M]. Feature-Metric Loss for Self-Supervised Learning of Depth and Egomotion, 572-588(2020).

    [21] CHEN Y H, SCHMID C, SMINCHISESCU C. Self-Supervised learning with geometric constraints in monocular video: connecting flow, depth, and camera[C], 7062-7071.

    [22] ZHOU J S, WANG Y W, QIN K H et al. Moving indoor: unsupervised video depth learning in challenging environments[C], 8617-8626.

    [23] TUYTELAARS T, VAN GOOL L[M]. SURF: Speeded Up Robust Features, 404-417(2006).

    [24] LI B Y, HUANG Y, LIU Z Y et al. Structdepth: leveraging the structural regularities for self-supervised indoor depth estimation[C], 12643-12653(10).

    [25] CHENG D Q, CHEN L L, LV C et al. Light-guided and cross-fusion U-net for anti-illumination image super-resolution[J]. IEEE Transactions on Circuits and Systems for Video Technology, 32, 8436-8449(2022).

    [26] [26] 黄慧, 董林鹭, 刘小芳, 等. 改进Retinex的低光照图像增强[J]. 光学 精密工程, 2020, 28(8): 1835-1849.HUANGH, DONGL L, LIUX F, et al. Improved retinex low light image enhancement method[J]. Opt. Precision Eng., 2020, 28(8): 1835-1849. (in Chinese)

    [27] ZHANG Y H, ZHANG J W, GUO X J. Kindling the darkness: a practical low-light image enhancer[C], 1632-1640(2019).

    [28] CAI J R, GU S H, ZHANG L. Learning a deep single image contrast enhancer from multi-exposure images[J]. IEEE Transactions on Image Processing, 27, 2049-2062(2018).

    [29] CHEN C, CHEN Q F, XU J et al. Learning to see in the dark[C], 3291-3300(18).

    [30] JIANG Y F, GONG X Y, LIU D et al. EnlightenGAN: deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing, 30, 2340-2349(2021).

    [31] GUO C L, LI C Y, GUO J C et al. Zero-reference deep curve estimation for low-light image enhancement[C], 1777-1786(13).

    [32] WANG K, ZHANG Z Y, YAN Z Q et al. Regularizing nighttime weirdness: efficient self-supervised monocular depth estimation in the dark[C], 16035-16044(10).

    [33] HE K M, ZHANG X Y, REN S Q et al. Deep residual learning for image recognition[C], 770-778(27).

    [34] HUANG G, LIU Z, VAN DER MAATEN L et al. Densely connected convolutional networks[C], 2261-2269(21).

    [36] [36] 程德强, 赵佳敏, 寇旗旗, 等. 多尺度密集特征融合的图像超分辨率重建[J]. 光学 精密工程, 2022, 30(20): 2489-2500. doi: 10.37188/OPE.20223020.2489CHENGD Q, ZHAOJ M, KOUQ Q, et al. Multi-scale dense feature fusion network for image super-resolution[J]. Opt. Precision Eng., 2022, 30(20): 2489-2500. (in Chinese). doi: 10.37188/OPE.20223020.2489

    [37] [37] 程德强, 陈杰, 寇旗旗, 等. 融合层次特征和注意力机制的轻量化矿井图像超分辨率重建方法[J]. 仪器仪表学报, 2022, 43(8): 73-84.CHENGD Q, CHENJ, KOUQ Q, et al. Lightweight super-resolution reconstruction method based on hierarchical features fusion and attention mechanism for mine image[J]. Chinese Journal of Scientific Instrument, 2022, 43(8): 73-84.(in Chinese)

    [38] [38] 蔡体健, 彭潇雨, 石亚鹏, 等. 通道注意力与残差级联的图像超分辨率重建[J]. 光学 精密工程, 2021, 29(1): 142-151. doi: 10.37188/OPE.20212901.0142CAIT J, PENGX Y, SHIY P, et al. Channel attention and residual concatenation network for image super-resolution[J]. Opt. Precision Eng., 2021, 29(1): 142-151. (in Chinese). doi: 10.37188/OPE.20212901.0142

    [39] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C], 7132-7141(18).

    [41] LIU L N, SONG X B, WANG M M et al. Self-supervised monocular depth estimation for all day images using domain separation[C], 12717-12726(10).

    [43] WANG Z, BOVIK A C, SHEIKH H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 13, 600-612(2004).

    [44] SILBERMAN N, HOIEM D, KOHLI P et al[M]. Indoor Segmentation and Support Inference from RGBD Images, 746-760(2012).

    [45] DAI A, CHANG A X, SAVVA M et al. ScanNet: richly-annotated 3d reconstructions of indoor scenes[C], 2432-2443(21).

    [46] HU J J, OZAY M, ZHANG Y et al. Revisiting single image depth estimation: toward higher resolution maps with accurate object boundaries[C], 1043-1051(7).

    [47] YIN W, LIU Y F, SHEN C H et al. Enforcing geometric constraints of virtual normal for depth prediction[C], 5683-5692.

    [48] FAROOQ BHAT S, ALHASHIM I, WONKA P. AdaBins: depth estimation using adaptive bins[C], 4008-4017(20).

    [49] NIKLAUS S, YANG J M et al. 3D Ken Burns effect from a single image[J]. ACM Transactions on Graphics, 38, 1-15.

    [50] ZHAO W, LIU S H, SHU Y Z et al. Towards better generalization: joint depth-pose learning without PoseNet[C], 9148-9158(13).

    [51] BIAN J W, ZHAN H Y, WANG N Y et al. Unsupervised scale-consistent depth learning from video[J]. International Journal of Computer Vision, 129, 2548-2564(2021).

    [52] BIAN JW, ZHAN H, WANG N et al. Unsupervised depth learning in challenging indoor video: Weak rectification to rescue[J]. arXiv preprint arXiv, 2020.

    [53] JIANG H L, DING L Y, HU J J et al. PLNet: plane and line priors for unsupervised indoor depth estimation[C], 741-750(1).

    [54] BIAN J W, ZHAN H Y, WANG N Y et al. Auto-rectify network for unsupervised indoor depth estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 9802-9813(2022).

    Tools

    Get Citation

    Copy Citation Text

    Deqiang CHENG, Huaqiang ZHANG, Qiqi KOU, Chen LÜ, Jiansheng QIAN. Indoor self-supervised monocular depth estimation based on level feature fusion[J]. Optics and Precision Engineering, 2023, 31(20): 2993

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Mar. 1, 2023

    Accepted: --

    Published Online: Nov. 28, 2023

    The Author Email: Jiansheng QIAN (qianjsh@cumt.edu.cn)

    DOI:10.37188/OPE.20233120.2993

    Topics