Infrared and Laser Engineering, Volume. 54, Issue 7, 20240598(2025)

Uav infrared object detection algorithm based on multi-scale fusion and channel compression

Kaijun WU1, Zhibo WAN1、*, Juanjuan DU2, Lidong ZHANG2, Yuelian WU2, and Fengqi ZHANG2
Author Affiliations
  • 1School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
  • 2Development Service Center of Tongliao National Agricultural Science and Technology Park, Tongliao 028006, China
  • show less
    Figures & Tables(18)
    Basic flow of PSI-YOLO modeling
    PSI-YOLO network structure
    Structure of the HGBlock feature extraction module
    Part of the perceptual spatial attention structure
    GSConv module including splicing structure and channel scrubbing structure
    (a) GS Bottleneck module; (b)VoV-GSCSP module
    Inner-IoU module diagram
    Sample of HIT-UAV infrared image data
    (a) YOLOv8n baseline method confusion matrix; (b) Improved method confusion matrix
    (a) Loss mAP chart; (b) Loss function comparison
    Comparison of detection effect of different scenes
    Heat map visualizing different scenarios of the model
    Comparison of detection effect of different scenes
    • Table 1. Exprimental parameter configuration

      View table
      View in Article

      Table 1. Exprimental parameter configuration

      ParameterValue
      OptimizerSGD
      Epochs/epochs300
      Lr01e-2
      Images size/pixel640×640
      Momentum0.937
      Patience/epochs10
    • Table 2. Ablation experiment results on the HIT-UAV validation set

      View table
      View in Article

      Table 2. Ablation experiment results on the HIT-UAV validation set

      MethodsmAP@0.5mAP@0.5:0.95Params/MFLOPs/GModule size/MFPS/fps
      HGNetv2PSASlim-neckInner-EIou
      ××××89.0%59.5%3.18.26.3131.7
      ×××87.9%59.0%2.36.64.6143.9
      ××90.2%60.4%2.36.75.0138.6
      ×90.7%60.6%2.05.94.7152.9
      90.5%61.4%2.05.94.7152.9
    • Table 3. Comparison of lightweight backbone networks

      View table
      View in Article

      Table 3. Comparison of lightweight backbone networks

      BackbonemAP@0.5Params/MFLOPs/GModule size/M
      CSPDarkNet89.0%3.18.26.3
      MobileNetV485.6%4.38.18.5
      Ghostnetv289.9%6.38.711.2
      ShuffleNetV288.7%2.77.55.9
      HGNetV287.9%2.36.64.6
      PHGNet90.2%2.36.75.0
    • Table 4. Comparison of loss functions

      View table
      View in Article

      Table 4. Comparison of loss functions

      IoUmAP@0.5mAP@0.5:0.95
      CIoU(baseline)90.7%60.6%
      EIoU88.5%60.3%
      FocusIoU89.4%59.9%
      Inner-CIoU89.7%61.0%
      Inner-EIoU90.5%61.4%
    • Table 5. Comparison of experimental results with eifferent model algorithms

      View table
      View in Article

      Table 5. Comparison of experimental results with eifferent model algorithms

      ModelsmAP@0.5mAP@0.5:0.95Params/MFLOPs/GModule size/MFPS/fps
      Faster-RCNN81.1%53.1%137.0310.5109.269.0
      YOLOv4-tiny78.2%51.9%6.16.95.9136.3
      YOLOv5s90.8%60.4%7.216.314.4146.2
      YOLOv6n87.0%58.3%4.211.98.7149.2
      YOLOv7-tiny89.6%59.3%6.013.211.7128.9
      YOLOv10n87.0%58.0%2.76.55.8140.6
      YOLOv8n89.0%59.5%3.18.26.3131.7
      PSI-YOLO90.5%61.4%2.05.94.7152.9
    Tools

    Get Citation

    Copy Citation Text

    Kaijun WU, Zhibo WAN, Juanjuan DU, Lidong ZHANG, Yuelian WU, Fengqi ZHANG. Uav infrared object detection algorithm based on multi-scale fusion and channel compression[J]. Infrared and Laser Engineering, 2025, 54(7): 20240598

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical imaging, display and information processing

    Received: Dec. 23, 2024

    Accepted: --

    Published Online: Aug. 29, 2025

    The Author Email: Zhibo WAN (12231965@stu.lzjtu.edu.cn)

    DOI:10.3788/IRLA20240598

    Topics