Chinese Journal of Lasers, Volume. 47, Issue 5, 0500018(2020)

Research Progress in 1550-nm All-Solid-State Lasers Based on Er 3+-Doped Crystals

Yujin Chen, Yanfu Lin, Jianhua Huang, Xinghong Gong, Zundu Luo, and Yidong Huang*
Author Affiliations
  • Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
  • show less
    References(88)

    [1] Denker B I, Galagan B I, Sverchkov S E et al[M]. Erbium (Er) glass lasers, 341-358(2013).

    [2] Setzler S D, Francis M P, Young Y E et al. Resonantly pumped eyesafe erbium lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 11, 645-657(2005).

    [3] Piper J A, Pask H M. Crystalline Raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 692-704(2007).

    [4] Zhu H Y, Zhang G, Chen H B et al. High-efficiency intracavity Nd∶YVO4\KTA optical parametric oscillator with 3.6 W output power at 1.53 μm[J]. Optics Express, 17, 20669-20674(2009).

    [6] Laporta P, Taccheo S, Longhi S et al. Erbium-ytterbium microlasers: optical properties and lasing characteristics[J]. Optical Materials, 11, 269-288(1999).

    [7] Xu J[M]. Rare earth laser crystals and their applications, 55-89(2016).

    [8] Chen Y J, Huang J H, Lin Y F et al. Progress of 1.5-1.6 μm laser crystals[J]. Chinese Journal of Structural Chemistry, 28, 1359-1366(2009).

    [9] Chen Y J, Lin Y F, Huang J H et al. Spectroscopic and laser properties of Er 3+∶Yb 3+∶LuAl3(BO3)4 crystal at 1.5-1.6 μm[J]. Optics Express, 18, 13700-13707(2010).

    [10] Tolstik N A, Kisel V E, Kuleshov N V et al. Er, Yb∶YAl3(BO3)4-efficient 1.5 μm laser crystal[J]. Applied Physics B, 97, 357(2009).

    [12] Kisel V E, Gorbachenya K N, Yasukevich A S et al. Passively Q-switched microchip Er, Yb∶YAl3(BO3)4 diode-pumped laser[J]. Optics Letters, 37, 2745-2747(2012).

    [13] Lagatsky A A, Kisel V E, Troshin A E et al. Diode-pumped passively mode-locked Er, Yb∶YAl3(BO3)4 laser at 1.5-1.6 μm[J]. Optics Letters, 33, 83-85(2008).

    [15] Xu C C, Huang Y D, Lin Y F et al. Real-time measurement of temperature distribution inside a gain medium of a diode-pumped Er 3+/Yb 3+ 1.55 μm laser[J]. Optics Letters, 42, 3383-3386(2017).

    [16] Wang X F, Liu Q, Bu Y Y et al. Optical temperature sensing of rare-earth ion doped phosphors[J]. RSC Advances, 5, 86219-86236(2015).

    [17] Chénais S, Forget S, Druon F et al. Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb∶YAG[J]. Applied Physics B, 79, 221-224(2004).

    [19] Li Y J, Feng J X, Li P et al. 400 mW low noise continuous-wave single-frequency Er, Yb∶YAl3(BO3)4 laser at 1.55 μm[J]. Optics Express, 21, 6082-6090(2013).

    [20] Chen Y J, Lin F L, Yang H Y et al. Temperature dependence of the spectroscopic properties of Er∶Yb∶YAl3(BO3)4 crystal between 300-800 K[J]. OSA Continuum, 2, 615-620(2019).

    [21] Huang Y J, Huang Y P, Liang H C et al. Comparative study between conventional and diffusion-bonded Nd-doped vanadate crystals in the passively mode-locked operation[J]. Optics Express, 18, 9518-9524(2010).

    [22] Mlynczak J, Belghachem N. High peak power generation in thermally bonded Er 3+, Yb 3+∶glass/Co 2+∶MgAl2O3 microchip laser for telemetry application[J]. Laser Physics Letters, 12, 045803(2015).

    [24] Chen Y J, Lin Y F, Huang J H et al. Fabrication and diode-pumped 1.55 μm continuous-wave laser performance of a diffusion-bonded Er∶Yb∶YAl3(BO3)4/YAl3(BO3)4 composite crystal[J]. Optics Express, 25, 17128-17133(2017).

    [26] Chen Y J, Lin Y F, Huang J H et al. Efficient continuous-wave and passively Q-switched pulse laser operations in a diffusion-bonded sapphire/Er∶Yb∶YAl3(BO3)4/sapphire composite crystal around 1.55 μm[J]. Optics Express, 26, 419-427(2018).

    [27] Chen Y J, Lin Y F, Yang Z M et al. Eye-safe 1.55 μm Er∶Yb∶YAl3(BO3)4 microchip laser[J]. OSA Continuum, 2, 142-150(2019).

    [29] Chen Y J, Lin Y F, Huang J H et al. Efficient diode-pumped acousto-optic Q-switched Er∶Yb∶GdAl3(BO3)4 pulse laser at 1522 nm[J]. Optics Letters, 40, 4927-4930(2015).

    [31] Gorbachenya K N, Kisel V E, Yasukevich A S et al. Eye-safe 1.55 μm passively Q-switched Er, Yb∶GdAl3(BO3)4 diode-pumped laser[J]. Optics Letters, 41, 918-921(2016).

    [32] Gorbachenya K N, Kisel V E, Yasukevich A S et al. Monolithic 1.5 μm Er, Yb∶GdAl3(BO3)4 eye-safe laser[J]. Optical Materials, 88, 60-66(2019).

    [33] Gorbachenya K N, Kisel V E, Yasukevich A S et al. Graphene Q-switched Er, Yb∶GdAl3(BO3)4 laser at 1550 nm[J]. Applied Optics, 56, 4745-4749(2017).

    [34] Gorbachenya K N, Kisel V E, Yasukevich A S et al. Passively Q-switched Er, Yb∶GdAl3(BO3)4 laser with single-walled carbon nanotube based saturable absorber[J]. Laser Physics Letters, 14, 035802(2017).

    [35] Gorbachenya K N, Kisel V E, Yasukevich A S et al. Er, Yb∶GdAl3(BO3)4 laser passively Q-switched by MBE-grown Cr∶ZnS thin films. [C]∥2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 25-29, 2017, Munich, Germany. New York: IEEE, 17314576(2017).

    [36] Huang Y S, Sun S J, Yuan F F et al. Spectroscopic properties and continuous-wave laser operation of Er 3+∶Yb 3+∶LaMgB5O10 crystal[J]. Journal of Alloys and Compounds, 695, 215-220(2017).

    [37] Huang Y S, Yuan F F, Sun S J et al. Thermal, spectral and laser properties of Er 3+∶Yb 3+∶GdMgB5O10: a new crystal for 1.5 μm lasers[J]. Materials, 11, 25(2017).

    [38] Chen Y J, Hou Q, Huang Y S et al. Efficient continuous-wave diode-pumped Er 3+∶Yb 3+∶LaMgB5O10 laser with sapphire cooling at 1.57 μm[J]. Optics Express, 25, 19320-19325(2017).

    [39] Chen Y J, Huang Y S, Lin Z B et al. Polarization switching realized in the continuous-wave and acousto-optic Q-switched pulse Er∶Yb∶LaMgB5O10 lasers at 1556 and 1568 nm[J]. Optics Express, 26, 19037-19042(2018).

    [40] Gorbachenya K N, Deineka R V, Kisel V E et al. Er, Yb∶Ca3RE2(BO3)4 (RE=Y, Gd)-novel 1.5 μm laser crystals[J]. Devices and Methods of Measurements, 10, 14-22(2019).

    [41] Xu J[M]. Rare earth laser crystals and their applications, 1-13(2016).

    [42] Huang J H, Chen Y J, Huang J H et al. Spectroscopic investigation of Dy 3+∶Lu2Si2O7 single crystal: a potential 589 nm laser medium[J]. Optical Materials, 72, 156-160(2017).

    [43] Pidol L, Kahn-Harari A, Viana B et al. Scintillation properties of Lu2Si2O7∶Ce 3+, a fast and efficient scintillator crystal[J]. Journal of Physics: Condensed Matter, 15, 2091-2102(2003).

    [45] Huang J H, Chen Y J, Wang H et al. Efficient 1620 nm continuous-wave laser operation of Czochralski grown Er∶Yb∶Lu2Si2O7 crystal[J]. Optics Express, 25, 24001-24006(2017).

    [46] Huang J H, Chen Y J, Lin Y F et al. 940 mW 1564 nm multi-longitudinal-mode and 440 mW 1537 nm single-longitudinal-mode continuous-wave Er∶Yb∶Lu2Si2O7 microchip lasers[J]. Optics Letters, 43, 1643-1646(2018).

    [47] Zhang X Z, Zhou Y, Ren J Y et al. Growth, thermal and laser properties of a new self-frequency-doubling Yb∶CNGS crystal[J]. CrystEngComm, 18, 5338-5343(2016).

    [48] Ma C Y, Wang Y M, Gao C Y et al. Growth, thermal and spectral properties, and laser performance of Tm 3+∶CNGS crystal[J]. CrystEngComm, 21, 866-875(2019).

    [49] Huang J H, Chen Y J, Lin Y F et al. Enhanced efficiency of Er∶Yb∶Ce∶NaGd(WO4)2 laser at 15-16 μm by the introduction of high-doping Ce 3+ ions[J]. Optics Letters, 33, 2548-2550(2008).

    [50] Gong G L, Chen Y J, Lin Y F et al. Spectral and laser properties of Er 3+/Yb 3+/Ce 3+tri-doped Ca3NbGa3Si2O14 crystal at 1.55 μm[J]. Laser Physics Letters, 15, 045805(2018).

    [51] Jaffrès A, Loiseau P, Aka G et al. CW diode pumped Er, Yb, Ce∶CAS single crystal 1.5 μm laser[J]. Laser Physics, 24, 125801(2014).

    [52] Jaffrès A, Viana B, Loiseau P et al. Actively Q-switch operation of diode-pumped Er 3+, Yb 3+, Ce 3+∶Ca2Al2SiO7 single crystal laser at 1.5-1.6 μm. [C]∥2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC, May 12-16, 2013, Munich, Germany. New York: IEEE, 14252858(2013).

    [53] Bjurshagen S, Brynolfsson P, Pasiskevicius V et al. Crystal growth, spectroscopic characterization, and eye-safe laser operation of erbium- and ytterbium-codoped KLu(WO4)2[J]. Applied Optics, 47, 656-665(2008).

    [54] Schweizer T, Jensen T, Heumann E et al. Spectroscopic properties and diode pumped 1.6 μm laser performance in Yb-codoped Er∶Y3Al5O12 and Er∶Y2SiO5[J]. Optics Communications, 118, 557-561(1995).

    [55] Tolstik N A, Troshin A E, Kurilchik S V et al. Spectroscopy, continuous-wave and Q-switched diode-pumped laser operation of Er 3+, Yb 3+∶YVO4 crystal[J]. Applied Physics B, 86, 275-278(2007).

    [56] Huang J H, Chen Y J, Gong X H et al. Effect of Ce 3+ doping on the spectroscopic properties and 1.55 μm laser operation of Er∶Yb∶Ce∶NaY(WO4)2 crystal[J]. Journal of the Optical Society of America B, 27, 2605-2611(2010).

    [57] Chen Y J, Huang J H, Zou Y Q et al. Diode-pumped Er 3+∶Yb 3+∶NaCe0.43Gd0.57(WO4)2 pulse laser passively Q-switched with a Co 2+∶Mg0.4Al2.4O4 saturable absorber at 1.53 μm[J]. Laser Physics, 24, 045810(2014).

    [59] Sulc J, Nemec M, Jelinkova H et al. Comparison of CW diode pumped Er∶YVO4 and Er∶GdVO4 lasers. [C]∥2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim Incorporating the Australasian Conference on Optics, Lasers and Spectroscopy, 1575-1577(2011).

    [60] Newburgh G A, Dubinskii M. High power eye-safe Er 3+∶YVO4 laser diode-pumped at 976 nm[J]. Electronics Letters, 52, 855-857(2016).

    [61] Serres J M, Loiko P, Jambunathan V et al. Efficient diode-pumped Er∶KLu(WO4)2 laser at ~161 μm[J]. Optics Letters, 43, 218-221(2018).

    [62] Ter-Gabrielyan N, Fromzel V, Ryba-Romanowski W et al. Spectroscopic and laser properties of resonantly (in-band) pumped Er∶YVO4 and Er∶GdVO4 crystals: a comparative study[J]. Optical Materials Express, 2, 1040-1049(2012).

    [63] Zhu L, Wang M J, Zhou J et al. Efficient 1645 nm continuous-wave and Q-switched Er∶YAG laser pumped by 1532 nm narrow-band laser diode[J]. Optics Express, 19, 26810-26815(2011).

    [64] Kim J W, Shen D Y, Sahu J K et al. Fiber-laser-pumped Er∶YAG lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 361-371(2009).

    [65] Shen D Y, Sahu J K, Clarkson W A. Highly efficient in-band pumped Er∶YAG laser with 60 W of output at 1645 nm[J]. Optics Letters, 31, 754-756(2006).

    [66] Yu Z Z, Wang M J, Hou X et al. High-energy resonantly diode-pumped Q-switched Er∶YAG laser at 1617 nm[J]. Applied Physics B, 122, 84(2016).

    [67] Shi Y, Gao C Q, Wang S et al. High-energy, single-frequency, Q-switched Er∶YAG laser with a double-crystals-end-pumping architecture[J]. Optics Express, 27, 2671-2680(2019).

    [70] Harris L, Clark M, Veitch P et al. Compact cavity-dumped Q-switched Er∶YAG laser[J]. Optics Letters, 41, 4309-4311(2016).

    [71] Zhu H L, Zhou W, Fan S Z et al. Kilohertz 1645 nm cavity-dumped Er∶YAG laser pumped by a broadband 1470 nm laser diode[J]. IEEE Photonics Journal, 9, 1504808(2017).

    [72] Tang P H, Zhang F J, Wu M et al. Stable Q-switched operation of a resonantly diode pumped Er∶YAG laser at 1617 and 1645 nm by Cr 2+∶ZnSe crystal[J]. Journal of Nonlinear Optical Physics & Materials, 26, 1750047(2017).

    [73] Aubourg A, Didierjean J, Aubry N et al. Passively Q-switched diode-pumped Er∶YAG solid-state laser[J]. Optics Letters, 38, 938-940(2013).

    [77] Huang B, Tang P H, Yi J et al. Resonantly pumped Er∶YAG laser Q-switched by topological insulator nanosheets at 1617 nm[J]. Optical Materials, 71, 74-77(2017).

    [78] Guo L, Li T, Zhang S Y et al. Black phosphorus saturable absorber for Q-switched Er∶YAG laser at 1645 nm[J]. Optics & Laser Technology, 100, 225-229(2018).

    [79] Li G Q, Wu C, Yan Z Y et al. TiS2 as a novel saturable absorber for a 1645 nm passively Q-switched laser[J]. Laser Physics, 29, 055801(2019).

    [80] Guo L, Li M, Li T et al. Inband pumped passively Q-switched Er∶YAG laser at 1645 nm using WS2[J]. Optics Communications, 406, 230-233(2018).

    [81] Xia H W, Li M, Li T et al. Few-layered MoS2 as a saturable absorber for a passively Q-switched Er∶YAG laser at 1.6 μm[J]. Applied Optics, 56, 2766-2770(2017).

    [82] Chen Y J, Lin Y F, Huang J H et al. Enhanced performances of diode-pumped sapphire/Er 3+∶Yb 3+∶LuAl3(BO3)4/sapphire micro-laser at 1.5-1.6 μm[J]. Optics Express, 23, 12401-12406(2015).

    [83] Burns P A, Dawes J M, Dekker P et al. Optimization of Er, Yb∶YCOB for CW laser operation[J]. IEEE Journal of Quantum Electronics, 40, 1575-1582(2004).

    [84] Denker B, Galagan B, Ivleva L et al. Luminescent and laser properties of Yb-Er∶GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers[J]. Applied Physics B, 79, 577-581(2004).

    [85] Fornasiero L, Petermann K, Heumann E et al. Spectroscopic properties and laser emission of Er 3+ in scandium silicates near 1.5 μm[J]. Optical Materials, 10, 9-17(1998).

    [86] Souriau J C, Romero R, Borel C et al. Room-temperature diode-pumped continuous-wave SrY4(SiO4)3O∶Yb 3+, Er 3+ crystal laser at 1554 nm[J]. Applied physics letters, 64, 1189-1191(1994).

    [87] Li J, Yang S H, He T. Diode laser in-band pumped, efficient 1645 nm continuous-wave and Q-switched Er∶YLuAG lasers with near-diffraction-limited beam quality[J]. Laser Physics Letters, 11, 015005(2014).

    [88] Williams G M. Jr. Optimization of eyesafe avalanche photodiode lidar for automobile safety and autonomous navigation systems[J]. Optical Engineering, 56, 031224(2017).

    Tools

    Get Citation

    Copy Citation Text

    Yujin Chen, Yanfu Lin, Jianhua Huang, Xinghong Gong, Zundu Luo, Yidong Huang. Research Progress in 1550-nm All-Solid-State Lasers Based on Er 3+-Doped Crystals[J]. Chinese Journal of Lasers, 2020, 47(5): 0500018

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: reviews

    Received: Sep. 2, 2019

    Accepted: Oct. 30, 2019

    Published Online: May. 12, 2020

    The Author Email: Huang Yidong (huyd@fjirsm.ac.cn)

    DOI:10.3788/CJL202047.0500018

    Topics