Opto-Electronic Engineering, Volume. 50, Issue 4, 220232(2023)

Few-shot image classification via multi-scale attention and domain adaptation

Long Chen1,2, Jianlin Zhang1、*, Hao Peng1,2, Meihui Li1, Zhiyong Xu1, and Yuxing Wei1
Author Affiliations
  • 1Institute of Optics and Electronics, Chinese Academy of Science, Chengdu, Sichuan 610209, China
  • 2School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Science, Beijing 100049, China
  • show less
    Figures & Tables(16)
    Diagram of 5-way 1-shot
    The framework of few-shot image classification via multi-scale attention and domain adaptation
    Image restoration by masked autoencoders
    Structure of the multi-scale attention
    Operating principle of the domain adaptation module. (a) Model training process; (b) Model testing process
    Model convergence on the miniImageNet dataset. (a) 5-way 1-shot;(b) 5-way 5-shot
    Model loss on the miniImageNet dataset. (a) 5-way 1-shot;(b) 5-way 5-shot
    Visualization of features based on convolutional neural network
    Visualization of image features in five classes of miniImageNet. (a) Baseline method; (b) MADA method
    Attention heat map
    Domain adaptation module analysis. (a) 5-way 1-shot; (b) 5-way 5-shot
    • Table 1. Structure of the backbone

      View table
      View in Article

      Table 1. Structure of the backbone

      模型结构输出尺寸ResNet-12Conv4
      卷积层142 × 42[3×3,64] × 3[3×3,64]
      卷积层221 × 21[3×3,160] × 3[3×3,64]
      卷积层310 × 10[3×3,320] × 3[3×3,64]
      卷积层45 × 5[3×3,640] × 3[3×3,64]
      池化层1 × 15×5 Pool5×5 Pool
      参数量50 MB0.46 MB
    • Table 2. Few-shot classification accuracies with 95 confidence interval on the miniImageNet dataset (the number of episodes is 10000)

      View table
      View in Article

      Table 2. Few-shot classification accuracies with 95 confidence interval on the miniImageNet dataset (the number of episodes is 10000)

      模型骨架网络5-way 1-shot5-way 5-shot
      Matching Net [12]Conv443.56±0.8455.31±0.37
      Proto Net [13]Conv449.42±0.7868.20±0.66
      Relation Net [21]Conv450.44±0.8265.32±0.70
      MAML [9]Conv448.70±1.8463.11±0.92
      DN4 [14]Conv451.24±0.7471.02±0.64
      DSN [23]Conv451.78±0.9668.99±0.69
      BOIL [25]Conv449.61±0.1666.45±0.37
      MADA(ours)Conv455.27±0.2072.12±0.16
      Matching Net [12]ResNet-1265.64±0.2078.73±0.15
      Proto Net [13]ResNet-1260.37±0.8378.02±0.75
      DN4 [14]ResNet-1254.37±0.3674.44±0.29
      DSN [23]ResNet-1262.64±0.6678.73±0.45
      SNAIL [22]ResNet-1255.71±0.9968.88±0.92
      CTM [24]ResNet-1264.12±0.8280.51±0.14
      MADA(ours)ResNet-1267.45±0.2082.77±0.13
    • Table 3. Few-shot classification accuracies with 95 confidence interval on the tieredImageNet dataset (the number of episodes is 10000)

      View table
      View in Article

      Table 3. Few-shot classification accuracies with 95 confidence interval on the tieredImageNet dataset (the number of episodes is 10000)

      模型骨架网络5-way 1-shot5-way 5-shot
      Matching Net [12]ResNet-1268.50±0.9280.60±0.71
      Proto Net [13]ResNet-1265.65±0.9283.40±0.65
      MetaOpt Net [26]ResNet-1265.99±0.7281.56±0.53
      TPN [27]ResNet-1259.91±0.9473.30±0.75
      CTM [24]ResNet-1268.41±0.3984.28±1.74
      LEO [10]ResNet-1266.63±0.0581.44±0.09
      MADA(ours)ResNet-1270.67±0.2285.10±0.15
    • Table 4. Few-shot classification accuracies with 95 confidence interval on the CUB dataset (the number of episodes is 10000)

      View table
      View in Article

      Table 4. Few-shot classification accuracies with 95 confidence interval on the CUB dataset (the number of episodes is 10000)

      模型骨架网络5-way 1-shot5-way 5-shot
      Matching Net [12]Conv460.52±0.8875.29±0.75
      Proto Net [13]Conv450.46±0.8876.39±0.64
      Relation Net [21]Conv461.10±0.7976.11±0.69
      MAML [9]Conv454.73±0.9775.75±0.76
      Baseline++ [28]Conv460.53±0.8379.34±0.61
      DN4 [14]Conv466.63±0.0581.44±0.09
      MADA(ours)Conv462.12±0.2477.63±0.17
    • Table 5. Ablation study of few-shot classification accuracies with 95 confidence interval on the miniImageNet (the number of episodes is 10000)

      View table
      View in Article

      Table 5. Ablation study of few-shot classification accuracies with 95 confidence interval on the miniImageNet (the number of episodes is 10000)

      网络MADADE5-way 1-shot5-way 5-shot
      Baseline×××60.37±0.8378.02±0.75
      MA××65.84±0.2381.94±0.34
      MADA×67.21±0.1882.41±0.48
      MADA+67.45±0.2082.77±0.13
    Tools

    Get Citation

    Copy Citation Text

    Long Chen, Jianlin Zhang, Hao Peng, Meihui Li, Zhiyong Xu, Yuxing Wei. Few-shot image classification via multi-scale attention and domain adaptation[J]. Opto-Electronic Engineering, 2023, 50(4): 220232

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Sep. 22, 2022

    Accepted: Dec. 29, 2022

    Published Online: Jun. 15, 2023

    The Author Email: Jianlin Zhang (jlin_zh@163.com)

    DOI:10.12086/oee.2023.220232

    Topics