Chinese Journal of Lasers, Volume. 49, Issue 14, 1402803(2022)
Laser Ultrasonic Nondestructive Testing on Metal Additive Manufacturing Components
[1] Zhu Z L, Zhao K, Guo L J et al. Application and development trend of additive manufacturing technology of large-scale metal component in aerospace manufacturing[J]. Electric Welding Machine, 50, 1-14, 124(2020).
[2] Feng S Y, Zhang H M. Research progress of selective laser sintering[J]. Jiangxi Chemical Industry, 56-57(2020).
[3] Wang F, Li K, Cao C L et al. Research status and prospect of selective laser sintering molding materials[J]. Foundry Technology, 38, 1258-1262(2017).
[4] Wu F, Zou Y D, Lin W S. Application of selective laser sintering technology and research progress in post processing of its sintered parts[J]. Journal of Synthetic Crystals, 45, 2666-2673(2016).
[5] Li H X, Gong S L, Sun F et al. Development and application of laser additive manufacturing for metal component[J]. Aeronautical Manufacturing Technology, 55, 26-31(2012).
[6] Zhou Y C, Zhao Y. Tensile performance of 316L stainless steel by additive manufacturing[J]. China Civil Engineering Journal, 53, 26-35(2020).
[7] Yang Y H. Analysis of classifications and characteristic of additive manufacturing (3D print)[J]. Advances in Aeronautical Science and Engineering, 10, 309-318(2019).
[8] Ma C, Liu Y H, Ji R J et al. Review of wire and arc additive manufacturing: technology genre and prospect[J]. Electromachining & Mould, 1-11(2020).
[9] Koester L, Taheri H, Bigelow T et al. Nondestructive testing for metal parts fabricated using powder-based additive manufacturing[J]. Materials Evaluation, 76, 514-524(2018).
[10] Ng G K L, Jarfors A E W, Bi G et al. Porosity formation and gas bubble retention in laser metal deposition[J]. Applied Physics A, 97, 641-649(2009).
[11] Ahn S H, Montero M, Odell D et al. Anisotropic material properties of fused deposition modeling ABS[J]. Rapid Prototyping Journal, 8, 248-257(2002).
[12] Zhang X L, Jiang Y C, Zhang X C et al. Research on industrial CT detection method of laser selective melting additive manufacturing components[J]. Nondestructive Testing Technology, 44, 34-36(2020).
[13] Zhang X C, Zhang X L, Liu Z et al. Application of industrial CT technology for additive manufacturing product by selective laser melting[J]. Nondestructive Testing, 41, 52-57(2019).
[14] Sun C J, Zhao Y H, Wang Z G et al. Development status and trend research of nondestructive testing for additive new-conceptual structure[J]. Vacuum, 56, 65-70(2019).
[15] Roy M, Walton K, Harley J B et al. Ultrasonic evaluation of segmental variability in additively manufactured metal components[C], 18326785(2018).
[16] Qiu J H, Zhang C, Ji H L et al. Non-destructive testing for aerospace composite structures using laser ultrasonic technique[J]. Aeronautical Manufacturing Technology, 63, 14-23(2020).
[17] Yuan J X, Qin X P, Zhang J P et al. Depth detection of internal defects for arc additive products based on laser ultrasound[J]. China Mechanical Engineering, 32, 65-73(2021).
[18] Zhou X G, He C F. Laser ultrasonic techniques for non-destructive testing[J]. Journal of Experimental Mechanics, 11, 87-94(1996).
[20] Wu R[D]. Study on surface microcrack detection based on laser ultrasound(2020).
[21] White R M. Elastic wave generation by electron bombardment or electromagnetic wave absorption[J]. Journal of Applied Physics, 34, 2123-2124(1963).
[22] Aakaryan A, Prolhorov A M, Chanturcy G F et al. The effects of a laser beam in a liquid[J]. Soviet Physics-Journal of Experimental and Theoretical Physics, 17, 1463-1465(1963).
[23] Rose L R F. Point-source representation for laser-generated ultrasound[J]. The Journal of the Acoustical Society of America, 75, 723-732(1984).
[24] McDonald F A. Practical quantitative theory of photoacoustic pulse generation[J]. Applied Physics Letters, 54, 1504-1506(1989).
[25] McDonald F A. On the precursor in laser-generated ultrasound waveforms in metals[J]. Applied Physics Letters, 56, 230-232(1990).
[26] Lei W, Chen J, Zhang S Y. Mechanisms of laser-generated of ultrasonic waves using an array of laser sources[J]. Journal of Physics D, 957-964(1995).
[27] Murray T W, Deaton J B,, Wagner J W. Experimental evaluation of enhanced generation of ultrasonic waves using an array of laser sources[J]. Ultrasonics, 34, 69-77(1996).
[28] Royer D, Chenu C. Experimental and theoretical waveforms of Rayleigh waves generated by a thermoelastic laser line source[J]. Ultrasonics, 38, 891-895(2000).
[29] Xu B Q, Ni X W, Shen Z H et al. Numerical simulation of laser-generated ultrasonic by finite element method in the plate material[J]. Chinese Journal of Lasers, 31, 621-625(2004).
[30] Chen X D, Yang J, Zhao X D et al. The status and development of finite element method[J]. Manufacture Information Engineering of China, 39, 6-8, 12(2010).
[31] Moser F, Jacobs L J, Qu J M. Modeling elastic wave propagation in waveguides with the finite element method[J]. NDT & E International, 32, 225-234(1999).
[32] Zerwer A, Polak M A, Santamarina J C. Rayleigh wave propagation for the detection of near surface discontinuities: finite element modeling[J]. Journal of Nondestructive Evaluation, 22, 39-52(2003).
[33] Hassan W, Veronesi W. Finite element analysis of Rayleigh wave interaction with finite-size, surface-breaking cracks[J]. Ultrasonics, 41, 41-52(2003).
[34] Xu B Q, Shen Z H, Wang J J et al. Thermoelastic finite element modeling of laser generation ultrasound[J]. Journal of Applied Physics, 99, 033508(2006).
[35] Shen Z H, Xu B Q, Ni X W et al. Numerical simulation of pulsed laser induced ultrasound in monolayer and double layer materials[J]. Chinese Journal of Lasers, 31, 1275-1280(2004).
[36] Jeong H. Finite element analysis of laser-generated ultrasound for characterizing surface-breaking cracks[J]. Journal of Mechanical Science and Technology, 19, 1116-1122(2005).
[37] Ni C Y, Shi Y F, Shen Z H et al. Numerical simulation on near-field surface acoustic waves induced by laser line source[J]. Infrared and Laser Engineering, 36, 324-327(2007).
[38] Guan J F, Shen Z H, Ni X W et al. Numerical study on depth evaluation of micro-surface crack by laser generated ultrasonic waves[J]. Journal of Test and Measurement Technology, 24, 15-21(2010).
[39] Pei C X, Demachi K, Zhu H T et al. Inspection of cracks using laser-induced ultrasound with shadow method: modeling and validation[J]. Optics & Laser Technology, 44, 860-865(2012).
[40] Hernandez-Valle F, Dutton B, Edwards R S. Laser ultrasonic characterisation of branched surface-breaking defects[J]. NDT & E International, 68, 113-119(2014).
[41] Liu W Y, Hong J W. Modeling of three-dimensional Lamb wave propagation excited by laser pulses[J]. Ultrasonics, 55, 113-122(2015).
[42] Zhou Z G, Zhang K S, Zhou J H et al. Application of laser ultrasonic technique for non-contact detection of structural surface-breaking cracks[J]. Optics & Laser Technology, 73, 173-178(2015).
[43] Liu P P, Nazirah A W, Sohn H. Numerical simulation of damage detection using laser-generated ultrasound[J]. Ultrasonics, 69, 248-258(2016).
[44] Guo H, Zheng B, Liu H. Numerical simulation and experimental research on interaction of micro-defects and laser ultrasonic signal[J]. Optics & Laser Technology, 96, 58-64(2017).
[45] Zhang L D, Li F G. The application of laser ultrasonic technique in NDT[J]. Journal of Ordnance Equipment Engineering, 21, 33-36(2000).
[46] Du L T, Liu S P. Laser ultrasound testing technology[J]. Nondestructive Testing Technology, 35, 1-4(2011).
[47] Millon C, Vanhoye A, Obaton A F et al. Development of laser ultrasonics inspection for online monitoring of additive manufacturing[J]. Welding in the World, 62, 653-661(2018).
[48] Zhang S Y. Laser ultrasonic and nondestructive evaluation of materials[J]. Applied Acoustics, 11, 1-6(1992).
[49] Yan G, Xu X D, Shen Z H et al. An experimental method of the laser-generated ultrasonic waves for detecting the surface-breaking defects[J]. Journal of Optoelectronics·Laser, 17, 107-110(2006).
[50] Yan W. Application of fiber Fizeau interferometer in detection of laser-induced surface acoustic wave[J]. Experimental Technology and Management, 25, 63-66(2008).
[51] Si G L, Zhang Z W. Laser ultrasonic displacement detection technology based on heterodyne interference[J]. Chinese Journal of Electron Devices, 39, 124-127(2016).
[52] Pierce R, Ume C, Jarzynski J. Temporal modulation of a laser source for the generation of ultrasonic waves[J]. Ultrasonics, 33, 133-137(1995).
[53] di Scalea F L, Green R E. High-sensitivity laser-based ultrasonic C-scan system for materials inspection[J]. Experimental Mechanics, 39, 329-334(1999).
[54] Nadeau A, Martin F, Blouin A et al. Application of laser-ultrasonics to the non-contact, pulse echo measurement of the thickness of micron thin metallic coatings[C], 894, 225-232(2007).
[55] Nagata Y, Yamada H, Hamada N et al. Development of asystem to measure recrystallization ratio of plate steel using laser-based ultrasonics[C], 894, 1676-1683(2007).
[56] Ding Y S, Yang S X, Gan C B. Detecting features of defect metal based on laser ultrasonic technique[J]. Journal of Vibration and Shock, 34, 33-37(2015).
[57] Feng W W, Pan Y D, Ru D H et al. Residual stress in cast iron brake disc measured by laser-generated surface wave technique[J]. Materials for Mechanical Engineering, 42, 78-82(2018).
[58] Li J Y, Shen Z H, Ni X W et al. Laser-ultrasonic non-destructive detection based on synthetic aperture focusing technique[J]. Chinese Journal of Lasers, 45, 0904003(2018).
[59] Sun K H, Shen Z H, Li Y L et al. Inspection of material internal defects using double shadow method based on laser ultrasonic reflected shear waves[J]. Chinese Journal of Lasers, 45, 0710001(2018).
[60] Nomura K, Otaki S, Kita R et al. In-situ detection of weld defect during the welding process by laser ultrasonic technique[J]. Proceedings of Meetings on Acoustics, 38, 030016(2019).
[61] Pan Z X, Song J K, Gao Y K. Residual stress measurement of GH4169 superalloy based on laser ultrasonic method[J]. Chinese Quarterly of Mechanics, 42, 98-107(2021).
[62] Gu Y H, Zhang Z Z, Gao X H et al. Application of nondestructive detection of aluminum using laser ultrasonic technology and EMAT method[J]. Chinese Journal of Lasers, 47, 0504002(2020).
[63] Ji B P, Cao J S, Huang G et al. A new detection method for steel strip distribution based on laser ultrasonic guided waves[J]. Chinese Journal of Lasers, 49, 0604001(2022).
[64] Chen C, Ying K N, Liu N et al. Application of phase shift migration method in laser ultrasonic SAFT[J]. Chinese Journal of Lasers, 48, 0304001(2021).
[65] Manzo A J, Helvajian H. Pulsed laser ultrasonic excitation and heterodyne detection for in situ process control in laser 3D manufacturing[J]. Journal of Laser Applications, 29, 012012(2017).
[66] Klein M, Sears J. Laser ultrasonic inspection of laser cladded 316LSS and TI-6-4[J]. International Congress on Applications of Lasers & Electro-Optics, 1006(2004).
[67] Pantano A, Cerniglia D. Simulation of laser-generated ultrasonic wave propagation in solid media and air with application to NDE[J]. Applied Physics A, 98, 327-336(2009).
[68] Cerniglia D, Scafidi M, Pantano A et al. Laser ultrasonic technique for laser powder deposition inspection[C](2013).
[69] Cerniglia D, Scafidi M, Pantano A et al. Inspection of additive-manufactured layered components[J]. Ultrasonics, 62, 292-298(2015).
[70] Chen S, Wang H T, Zhao J Y et al. Application in surface defect inspection of additive manufactured based on laser ultrasonic surface wave[C], 266-270(2018).
[71] Bakre C, Hassanian M, Lissenden C. Influence of surface roughness from additive manufacturing on laser ultrasonics measurements[C], 2102, 020009(2019).
[72] Bigelow T A, Schneider B, Taheri H. Detection of pores in additive manufactured parts by near field response of laser-induced ultrasound[C], 2102, 070002(2019).
[73] Davis G, Rajagopal P, Balasubramaniam K et al. Laser generation of narrowband lamb waves for in situ inspection of additively manufactured metal components[C], 2102, 070001(2019).
[74] Yu J, Zhang D Q, Li H et al. Detection of internal holes in additive manufactured Ti-6Al-4V part using laser ultrasonic testing[J]. Applied Sciences, 10, 365(2020).
[75] Zhang J, Wu J F, Zhao X et al. Laser ultrasonic imaging for defect detection on metal additive manufacturing components with rough surfaces[J]. Applied Optics, 59, 10380-10388(2020).
[76] Zhan Y, Liu C, Zhang J J et al. Measurement of residual stress in laser additive manufacturing TC4 titanium alloy with the laser ultrasonic technique[J]. Materials Science and Engineering A, 762, 138093(2019).
[77] Lévesque D, Bescond C, Cojocaru C. Laser-ultrasonic inspection of cold spray additive manufacturing components[J]. AIP Conference Proceedings, 2102, 020026(2019).
[78] Ma Y Y, Hu X J, Hu Z L et al. Simultaneous compositional and grain size measurements using laser opto-ultrasonic dual detection for additive manufacturing[J]. Materials, 13, 2404(2020).
[79] Ma Y Y, Hu Z L, Tang Y et al. Laser opto-ultrasonic dual detection for simultaneous compositional, structural, and stress analyses for wire+arc additive manufacturing[J]. Additive Manufacturing, 31, 100956(2020).
[80] Yang C H, Jeyaprakash N, Chan C K. Inhomogeneous mechanical properties in additively manufactured parts characterized by nondestructive laser ultrasound technique[J]. NDT & E International, 116, 102340(2020).
[81] Zhan Y, Xu H X, Du W Q et al. Research on the influence of heat treatment on residual stress of TC4 alloy produced by laser additive manufacturing based on laser ultrasonic technique[J]. Ultrasonics, 115, 106466(2021).
[82] Mani M, Lane B M, Donmez M A et al. A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes[J]. International Journal of Production Research, 55, 1400-1418(2017).
[83] Chua Z Y, Ahn I H, Moon S K. Process monitoring and inspection systems in metal additive manufacturing: status and applications[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 4, 235-245(2017).
Get Citation
Copy Citation Text
Ping Hu, Lin Ai, Ziyan Qiu, Junjie Zuo, Sheng Liu, Yang Liu, Zhixin Peng, Changhui Song. Laser Ultrasonic Nondestructive Testing on Metal Additive Manufacturing Components[J]. Chinese Journal of Lasers, 2022, 49(14): 1402803
Category: Performance Evaluation and Validation
Received: Aug. 23, 2021
Accepted: Oct. 27, 2021
Published Online: Jul. 6, 2022
The Author Email: Hu Ping (ping.hu@whu.edu.cn)