Optical Technique, Volume. 47, Issue 4, 507(2021)
Denoising process for image impulse noise based on dual-channel neural networks
[8] [8] Jiayi C, Yinwei Z, Huiying C, et al. Adaptive probability filter for removing salt and pepper noises[J]. Iet Image Processing,2018,12(6):863—871.
[9] [9] Garg B, Satti P, Sharma N. Min-max average pooling based filter for impulse noise removal[J]. Signal Processing Letters, 2020,27(99):1475—1479.
[10] [10] Jia X, Guo Y, Zhao B, et al. Fractional-integral-operator-based improved SVM for filtering salt-and-pepper noise[J]. Image Processing,2019,13(12):2346—2357.
[11] [11] Chen J, Zhang G, Xu S, et al. A blind CNN denoising model for random-valued impulse noise[J]. IEEE Access,2019,1(99):1—1.
[13] [13] Zhang T, Zhang H, Wang R, et al. A new JPEG image steganalysis technique combining rich model features and convolutional neural networks[J]. Mathematical Biosciences and Engineering,2019,16(5):4069—4081.
[15] [15] Faro A, Giordano D, Scarciofalo G, et al. Bayesian networks for edge preserving salt and pepper image denoising[C]∥ Image Processing Theory, Tools & Applications, Ipta First Workshops on.IEEE,2009.
[16] [16] Kandemir C, Kalyoncu C, Toygar C. A weighted mean filter with spatial-bias elimination for impulse noise removal[J]. Digital Signal Processing,2015,46:164—174.
[17] [17] Erkan U, GKrem L, EnginoLu S. Different applied median filter in salt and pepper noise[J]. Computers & Electrical Engineering,2018,70(2):789—798.
[18] [18] Singh V, Dev R, Dhar N K, et al. Adaptive Type-2 fuzzy approach for filtering salt and pepper noise in grayscale images[J]. IEEE Transactions on Fuzzy Systems,2018,26(5):1—1.
Get Citation
Copy Citation Text
YUAN Xinyan. Denoising process for image impulse noise based on dual-channel neural networks[J]. Optical Technique, 2021, 47(4): 507
Category:
Received: Feb. 7, 2021
Accepted: --
Published Online: Sep. 1, 2021
The Author Email: Xinyan YUAN (2014106@jsbc.edu.cn)
CSTR:32186.14.