Journal of Synthetic Crystals, Volume. 50, Issue 9, 1603(2021)

Single-Crystal Fiber Growth and Single-Crystal Fiber High-Temperature Sensors: Review and Perspective

WANG Tao, JIA Zhitai, LI Yang, ZHANG Jian, and TAO Xutang
Author Affiliations
  • [in Chinese]
  • show less
    References(110)

    [1] [1] WANG T, ZHANG J, ZHANG N, et al. Single crystal fibers: diversified functional crystal material[J]. Advanced Fiber Materials, 2019, 1(3/4): 163-187.

    [3] [3] ANDRADE D C. The flow in metals under large constant stresses[J]. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 1914, 90(619): 329-342.

    [4] [4] CZOCHRALSKI J. A new method for the measurement of the crystallization rate of metals[J]. Zeitschrift Für Physikalische Chemie, 1918, 92: 219-221.

    [5] [5] GOMPERZ E V. Untersuchungen an einkristalldrhten[J]. Zeitschrift Für Physik, 1922, 8(1): 184-190.

    [10] [10] XU S Y, WANG Z H, GUI L J. Contact mode thermal sensors for ultrahigh-temperature region of 2000-3500 K[J]. Rare Metals, 2019, 38(8): 713-720.

    [11] [11] WERNER M R, FAHRNER W R. Review on materials, microsensors, systems and devices for high-temperature and harsh-environment applications[J]. IEEE Transactions on Industrial Electronics, 2001, 48(2): 249-257.

    [12] [12] SHI R, NING L X, HUANG Y, et al. Li4SrCa(SiO4)2∶Eu2+: a potential temperature sensor with unique optical thermometric properties[J]. ACS Applied Materials & Interfaces, 2019, 11(10): 9691-9695.

    [13] [13] HOLMSTEN M, IVARSSON J, FALK R, et al. Inhomogeneity measurements of long thermocouples using a short movable heating zone[J]. International Journal of Thermophysics, 2008, 29(3): 915-925.

    [14] [14] BENTLEY R. Thermocouple materials and their properties[R]. CSIRO Technical Report, 1988.

    [15] [15] WANG T, ZHANG J, YANG L, et al. Fabrication and sensitivity optimization of garnet crystal-fiber ultrasonic temperature sensor[J]. Journal of Materials Chemistry C, 2020, 8(11): 3830-3837.

    [16] [16] WANG Y, JIA Y, CHEN Q S, et al. A passive wireless temperature sensor for harsh environment applications[J]. Sensors, 2008, 8(12): 7982-7995.

    [17] [17] CHEN H, BURIC M, OHODNICKI P R, et al. Review and perspective: sapphire optical fiber cladding development for harsh environment sensing[J]. Applied Physics Reviews, 2018, 5(1): 011102.

    [18] [18] WEI Y L, LIANG H J, WANG G, et al. Ultrasonic thermometric measurement system for solid rocket combustion chambers[J]. Ultrasonics, 2021, 113: 106361.

    [19] [19] YAN A D, CHEN R Z, ZAGHLOUL M, et al. Sapphire fiber optical hydrogen sensors for high-temperature environments[J]. IEEE Photonics Technology Letters, 2016, 28(1): 47-50.

    [20] [20] CHORPENING B, BURIC M, LIU B, et al. Progress toward multipoint high temperature sensing with sapphire optical fiber for power generation[J]. NETL, 2018.

    [21] [21] YAN A D, CHEN R Z, POOLE Z L, et al. Fiber optical chemical sensors rated for 800 ℃ operation[C]. 2015 Conference on Lasers and Electro-Optics(CLEO): STh4O.3.

    [22] [22] ANDREETA M R B, HERNANDES A C. Laser-heated pedestal growth of oxide fibers[M]//Springer Handbook of Crystal Growth. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 393-432.

    [25] [25] RUDOLPH P, FUKUDA T. Fiber crystal growth from the melt[J]. Crystal Research and Technology, 1999, 34(1): 3-40.

    [26] [26] GASSON D B, COCKAYNE B. Oxide crystal growth using gas lasers[J]. Journal of Materials Science, 1970, 5(2): 100-104.

    [27] [27] HAGGERTY J S. Production of fibers by a floating zone fiber drawing technique[R]. US: US Gov.Public, 1972.

    [28] [28] FEJER M, BYER R L, FEIGELSON R, et al. Growth and characterization of single crystal refractory oxide fibers[C]//Proc SPIE 0320, Advances in Infrared Fibers Ⅱ, 1982, 0320: 50-55.

    [29] [29] FEIGELSON R S. The laser-heated pedestal growth method: a powerful tool in the search for new high performance laser crystals[M]//Tunable Solid State Lasers. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985: 129-142.

    [30] [30] FEJER M M, MAGEL G A, BYER R L. High-speed high-resolution fiber diameter variation measurement system[J]. Applied Optics, 1985, 24(15): 2362-2368.

    [31] [31] UDA S, TILLER W A. The influence of an interface electric field on the distribution coefficient of chromium in LiNbO3[J]. Journal of Crystal Growth, 1992, 121(1/2): 93-110.

    [32] [32] SUGIYAMA Y, HATAKEYAMA I, YOKOHAMA I. Growth of a-axis strontium barium niobate single crystal fibers[J]. Journal of Crystal Growth, 1993, 134(3/4): 255-265.

    [33] [33] PHOMSAKHA V, CHANG R S F, DJEU N. Novel implementation of laser heated pedestal growth for the rapid drawing of sapphire fibers[J]. Review of Scientific Instruments, 1994, 65(12): 3860-3861.

    [34] [34] YOKOO A, TOMARU S, YOKOHAMA I, et al. A new growth method for long rod-like organic nonlinear optical crystals with phase-matched direction[J]. Journal of Crystal Growth, 1995, 156(3): 279-284.

    [35] [35] IMAI T, YAGI S, SUGIYAMA Y, et al. Growth of potassium tantalate niobate single crystal fibers by the laser-heated pedestal growth method assisted by a crystal cooling technique[J]. Journal of Crystal Growth, 1995, 147(3/4): 350-354.

    [36] [36] BRCK E, GELDERS H J, HARRISON B J, et al. Laser-heated fibre pedestal growth under UHV conditions[J]. Journal of Crystal Growth, 1996, 166(1/2/3/4): 394-397.

    [37] [37] NUBLING R K, HARRINGTON J A. Optical properties of single-crystal sapphire fibers[J]. Applied Optics, 1997, 36(24): 5934-5940.

    [38] [38] MATSUKURA M, CHEN Z M, ADACHI M, et al. Growth of potassium lithium niobate single-crystal fibers by the laser-heated pedestal growth method[J]. Japanese Journal of Applied Physics, 1997, 36(Part 1, No. 9B): 5947-5949.

    [39] [39] REYES ARDILA D, ANDREETA J P, RIBEIRO C T M, et al. Improved laser-heated pedestal growth system for crystal growth in medium and high isostatic pressure environment[J]. Review of Scientific Instruments, 1999, 70(12): 4606-4608.

    [40] [40] ARDILA D R, BARBOSA L B, ANDREETA J P. Bifocal spherical mirror for laser processing[J]. Review of Scientific Instruments, 2001, 72(12): 4415-4418.

    [41] [41] LAVERSENNE L, GUYOT Y, GOUTAUDIER C, et al. Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3[J]. Optical Materials, 2001, 16(4): 475-483.

    [42] [42] ANDREETA M R B, ANDREETA E R M, HERNANDES A C, et al. Thermal gradient control at the solid-liquid interface in the laser-heated pedestal growth technique[J]. Journal of Crystal Growth, 2002, 234(4): 759-761.

    [43] [43] ANDREETA M R B, CARASCHI L C, HERNANDES A C. Automatic diameter control system applied to the laser heated pedestal growth technique[J]. Materials Research, 2003, 6(1): 107-110.

    [44] [44] LO C Y, HUANG K Y, CHEN J C, et al. Double-clad Cr4+∶YAG crystal fiber amplifier[J]. Optics Letters, 2005, 30(2): 129-131.

    [45] [45] NIE C D, BERA S, HARRINGTON J A. Growth of single-crystal YAG fiber optics[J]. Optics Express, 2016, 24(14): 15522.

    [46] [46] BURIC M, YIP M J, CHORPENING B, et al. Laser heated pedestal growth system commissioning and fiber processing[C]//SPIE Commercial+Scientific Sensing and Imaging. Proc SPIE 9852, Fiber Optic Sensors and Applications XIII, Baltimore, Maryland, USA. 2016, 9852: 985219.

    [47] [47] KIM W, BAYYA S, SHAW L B, et al. Crystal fiber lasers[C]//SPIE Optical Engineering+Applications. Proc SPIE 10382, Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications Ⅺ, San Diego, California, USA. 2017, 1038: 103820Q.

    [48] [48] PROKOFIEV V V, ANDREETA J P, DE LIMA C J, et al. Growth of single-crystal photorefractive fibers of Bi12SiO20 and Bi12TiO20 by the laser-heated pedestal growth method[J]. Journal of Crystal Growth, 1994, 137(3/4): 528-534.

    [49] [49] BURIC M, LIU B, THAPA J, et al. Single-crystal fiber structures for harsh environment applications (Rising Researcher Presentation)[C]//SPIE Commercial+Scientific Sensing and Imaging. Proc SPIE 10654, Fiber Optic Sensors and Applications XV, Orlando, Florida, USA. 2018, 1065: 106540 N.

    [50] [50] BERA S, NIE C D, SOSKIND M G, et al. Growth and lasing of single crystal YAG fibers with different Ho3+ concentrations[J]. Optical Materials, 2018, 75: 44-48.

    [51] [51] BERA S, NIE C D, HARRINGTON J A. Growth of coilable yttrium aluminum garnet single crystal fibers with low loss and tailored rare-earth dopant concentration, using laser heated pedestal growth technique[C]. Advanced Solid State Lasers, 2017.

    [52] [52] MAXWELL G, PONTING B, GEBREMICHAEL E, et al. Advances in single-crystal fibers and thin rods grown by laser heated pedestal growth[J]. Crystals, 2017, 7(1): 12.

    [53] [53] MAXWELL G, PONTING B, SOLEIMANI N, et al. Single-crystal fibers for higher-power lasers[J]. SPIE Newsroom, 2014. DOI:10.1117/2.1201401.005298.

    [54] [54] KIM W, SHAW B, BAYYA S, et al. Cladded single crystal fibers for high power fiber lasers[C]//SPIE Optical Engineering + Applications. Proc SPIE 9958, Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications X, San Diego, California, USA. 2016, 9958: 99580O.

    [55] [55] SHAW L B, ASKINS C, KIM W, et al. Cladding pumped single crystal Yb∶YAG fiber amplifier[C]. Advance Solid State Lasers, 2015.

    [56] [56] DUBINSKII M, ZHANG J, FROMZEL V, et al. Low-loss ‘crystalline-core/crystalline-clad’ (C4) fibers for highly power scalable high efficiency fiber lasers[J]. Optics Express, 2018, 26(4): 5092-5101.

    [57] [57] BURIC M P, LIU B, BERA S, et al. Fabrication and on-line evaluation of single crystal fiber via laser-heated pedestal growth[C]//Fiber Optic Sensors and Applications XVI. April 14-18, 2019. Baltimore, USA. SPIE, 2019.

    [58] [58] LIU B, BURIC M, WUENSCHELL J, et al. Optical properties and long-term stability of unclad single crystal sapphire fiber in harsh environments[C]//SPIE OPTO. Proc SPIE 10914, Optical Components and Materials XVI, San Francisco, California, USA. 2019, 1091: 109140Z.

    [59] [59] ACKERMANN H, KIM W, FLOREA C, et al., Single crystal fibers for high power lasers[C]//High-Power Lasers 2012: Technology and Systems, 2012.

    [60] [60] KIM W, BAYYA S, SHAW B, et al. Hydrothermally cladded crystalline fibers for laser applications[J]. Optical Materials Express, 2019, 9(6): 2716-2728.

    [61] [61] MAXWELL G, SOLEIMANI N, PONTING B, et al. Coilable single crystal fibers of doped-YAG for high power laser applications[C]//SPIE Defense, Security, and Sensing. Proc SPIE 8733, Laser Technology for Defense and Security Ⅸ, Baltimore, Maryland, USA. 2013, 8733: 87330T.

    [62] [62] KIM W, FLOREA C, BAKER C, et al. Single crystal fibers for high power lasers[C]//SPIE Security + Defence. Proc SPIE 8547, High-Power Lasers 2012: Technology and Systems, Edinburgh, United Kingdom. 2012, 8547: 85470K.

    [63] [63] GUZIK M, PEJCHAL J, YOSHIKAWA A, et al. Structural investigations of Lu2O3 as single crystal and polycrystalline transparent ceramic[J]. Crystal Growth & Design, 2014, 14(7): 3327-3334.

    [64] [64] MAO T C, CHEN J C, HU C C. Characterization of the growth mechanism of YIG crystal fibers using the laser heated pedestal growth method[J]. Journal of Crystal Growth, 2005, 282(1/2): 143-151.

    [65] [65] ROMERO J J, MONTOYA E, BAUS L E, et al. Multiwavelength laser action of Nd3+∶YAlO3 single crystals grown by the laser heated pedestal growth method[J]. Optical Materials, 2004, 24(4): 643-650.

    [66] [66] ROMERO J J, ANDREETA M R B, ANDREETA E R M, et al. Growth and characterization of Nd-doped SBN single crystal fibers[J]. Applied Physics A, 2004, 78(7): 1037-1042.

    [67] [67] ITO M, HRAIECH S, GOUTAUDIER C, et al. Growth of Yb3+-doped KY3F10 concentration gradient crystal fiber by laser-heated pedestal growth (LHPG) technique[J]. Journal of Crystal Growth, 2008, 310(1): 140-144.

    [68] [68] JIANG Y J, GUO R Y, BHALLA A S. Growth and dielectric properties of Ta2O5 single crystals grown by laser heated pedestal growth technique[J]. Chinese Journal of Lasers, 2008, 35(11): 1710-1712.

    [69] [69] FARHI H, LEBBOU K, BELKAHLA S, et al. Fiber single crystal growth by LHPG technique and optical characterization of Ce3+-doped Lu2SiO5[J]. Optical Materials, 2008, 30(9): 1461-1467.

    [70] [70] PHILIPPEN J, GUGUSCHEV C, KLIMM D. Single crystal fiber growth of cerium doped strontium yttrate, SrY2O4∶Ce3+[J]. Journal of Crystal Growth, 2017, 459: 17-22.

    [71] [71] SILVA M S, JESUS L M, BARBOSA L B, et al. Crucibleless crystal growth and Radioluminescence study of calcium tungstate single crystal fiber[J]. Optical Materials, 2014, 37: 51-54.

    [72] [72] BOULON G, ITO M, GOUTAUDIER C, et al. Advances in growth of fiber crystal by the LHPG technique. Application to the optimization of Yb3+-doped CaF2 laser crystals[J]. Journal of Crystal Growth, 2006, 292(2): 230-235.

    [73] [73] YOSHIKAWA A, BOULON G, LAVERSENNE L, et al. Growth and spectroscopic analysis of Yb3+-doped Y3Al5O12 fiber single crystals[J]. Journal of Applied Physics, 2003, 94(9): 5479-5488.

    [74] [74] CHEN C Y, CHEN J C, CHIA C T. Growth and optical properties of different compositions of LiNbO3 single crystal fibers[J]. Optical Materials, 2007, 30(3): 393-398.

    [75] [75] HUANG C H, CHEN J C, HU C. YVO4 single-crystal fiber growth by the LHPG method[J]. Journal of Crystal Growth, 2000, 211(1/2/3/4): 237-241.

    [76] [76] FERRARI C R, DE CAMARGO A S S, NUNES L A O, et al. Laser heated pedestal growth and optical characterization of CaTa2O6 single crystal fiber[J]. Journal of Crystal Growth, 2004, 266(4): 475-480.

    [77] [77] ANDREETA M R B, ANDREETA E R M, HERNANDES A C. Laser-heated pedestal growth of colorless LaAlO3 single crystal fiber[J]. Journal of Crystal Growth, 2005, 275(1/2): e757-e761.

    [78] [78] WANG D H, HOU W T, LI N, et al. Defects and optical property of single-crystal sapphire fibers grown by edge-defined film-fed growth method[J]. Journal of Inorganic Materials, 2020, 35(9): 1053.

    [80] [80] LABELLE H E Jr. Growth of controlled profile crystals from the melt: part Ⅱ -edge-defined, film-fed growth (EFG)[J]. Materials Research Bulletin, 1971, 6(7): 581-589.

    [81] [81] KURLOV V N, STRYUKOV D O, SHIKUNOVA I A. Growth of sapphire and oxide eutectic fibers by the EFG technique[J]. Journal of Physics: Conference Series, 2016, 673: 012017.

    [82] [82] KATYBA G M, MELIKYANTS D G, CHERNOMYRDIN N V, et al. Terahertz transmission-mode scanning-probe near-field optical microscopy based on a flexible step-index sapphire fiber[C]//2021: 082010.

    [83] [83] KIM K, CULLEN G, BERKMAN S, et al. Silicon sheet growth by the Inverted Stepanov Technique[R]. Quarterly report No. 1, March 22, 1976-June 30, 1976, RCA Labs., Princeton, NJ (USA), 1976.

    [85] [85] FUKUDA T, CHANI V I. Shaped crystals[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.

    [86] [86] WANG A Y, ZHANG J, YE S, et al. Optimized growth and laser application of Yb∶LuAG single-crystal fibers by micro-pulling-down technique[J]. Crystals, 2021, 11(2): 78.

    [87] [87] WU B Y, NIE H K, WANG A Y, et al. Factors influencing optical uniformity of YAG single-crystal fiber grown by micro-pulling-down technology[J]. CrystEngComm, 2019, 21(45): 6929-6934.

    [88] [88] YOKOTA Y, SATO M, TOTA K, et al. Growth of shape-controlled Ca3NbGa3Si2O14 and Sr3NbGa3Si2O14 single crystals by micro-pulling-down method and their physical properties[J]. Japanese Journal of Applied Physics, 2011, 50(9S2): 09ND03.

    [89] [89] VEBER P, BARTOSIEWICZ K, DEBRAY J, et al. Lead-free piezoelectric crystals grown by the micro-pulling down technique in the BaTiO3-CaTiO3-BaZrO3 system[J]. CrystEngComm, 2019, 21(25): 3844-3853.

    [90] [90] PIRZIO F, JUN S, TACCHINI S, et al. Multi-watt amplification in a birefringent Yb∶LiLuF4 single crystal fiber grown by micro-pulling-down[J]. Optics Letters, 2019, 44(17): 4095-4098.

    [91] [91] DE MORAES J R, BALDOCHI S L, SOARES L D R L, et al. Growth, structural and optical characterizations of LiLa(1-x)Eux(WO4)2 single-crystalline fibers by the micro-pulling-down method[J]. Materials Research Bulletin, 2012, 47(3): 744-749.

    [92] [92] FANG H S, YAN Z W, BOURRET-COURCHESNE E D. Numerical study of the micro-pulling-down process for sapphire fiber crystal growth[J]. Crystal Growth & Design, 2011, 11(1): 121-129.

    [93] [93] LEBBOU K. Single crystals fiber technology design. Where we are today?[J]. Optical Materials, 2017, 63: 13-18.

    [97] [97] ZHAO Y G, WANG L, CHEN W D, et al. 35 W continuous-wave Ho∶YAG single-crystal fiber laser[J]. High Power Laser Science and Engineering, 2020, 8: e25. DOI:10.1017/hpl.2020.25.

    [98] [98] DAI Y, ZHANG Z H, WANG Y X, et al. Growth of Tm∶Lu3Al5O12 single crystal fiber from transparent ceramics by laser-heated pedestal method and its spectral properties[J]. Optical Materials, 2021, 111: 110674.

    [99] [99] YANG Y L, YE L H, BAO R J, et al. Growth and characterization of Yb∶Ho∶YAG single crystal fiber[J]. Infrared Physics & Technology, 2018, 91: 85-89.

    [100] [100] WANG N N, WANG X L, HU X H, et al. 41.8 W output power, 200 kHz repetition rate ultra-fast laser based on Yb∶YAG single crystal fiber(SCF)amplifier[J]. Optics & Laser Technology, 2020, 127: 106202.

    [101] [101] LIU J, DONG J F, ZHAO Y G, et al. Tm∶YAG single-crystal fiber laser[J]. Optics Letters, 2021. DOI:10.1364/ol.434618.

    [102] [102] WANG Y X, WANG S Z, WANG J Y, et al. High-efficiency ~μm CW laser operation of LD-pumped Tm3+∶CaF2 single-crystal fibers[J]. Optics Express, 2020, 28(5): 6684.

    [103] [103] LIU J, DONG J F, WANG Y Y, et al. Laser operation of Tm∶LuAG single-crystal fiber grown by the micro-pulling down method[J]. Crystals, 2021, 11(8): 898.

    [105] [105] DILS R R. High-temperature optical fiber thermometer[J]. Journal of Applied Physics, 1983, 54(3): 1198-1201.

    [108] [108] AN N, ZHOU H L, ZHU K S, et al. Improved temperature sensing performance of YAG∶Ho3+/Yb3+ by doping Ce3+ ions based on up-conversion luminescence[J]. Journal of Alloys and Compounds, 2020, 843: 156057.

    [109] [109] LEE C E, TAYLOR H F. Interferometric optical fibre sensors using internal mirrors[J]. Electronics Letters, 1988, 24(4): 193.

    [110] [110] TIAN Z, YU Z, LIU B, et al. Sourceless optical fiber high temperature sensor[J]. Optics Letters, 2016, 41(2): 195-198.

    [111] [111] YANG S, FENG Z A, JIA X T, et al. All-sapphire miniature optical fiber tip sensor for high temperature measurement[J]. Journal of Lightwave Technology, 2020, 38(7): 1988-1997.

    [112] [112] HABISREUTHER T, ELSMANN T, PAN Z W, et al. Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics[J]. Applied Thermal Engineering, 2015, 91: 860-865.

    [113] [113] WILSON B A, BLUE T E. Quasi-distributed temperature sensing using type-Ⅱ fiber Bragg gratings in sapphire optical fiber to temperatures up to 1300 ℃[J]. IEEE Sensors Journal, 2018, 18(20): 8345-8351.

    [114] [114] HUANG J, LAN X W, SONG Y, et al. Microwave interrogated sapphire fiber Michelson interferometer for high temperature sensing[J]. IEEE Photonics Technology Letters, 2015, 27(13): 1398-1401.

    [115] [115] LIU B, OHODNICKI P R. Fabrication and application of single crystal fiber: review and prospective[J]. Advanced Materials Technologies, 2021: 2100125.

    [116] [116] LIU B, YU Z H, HILL C, et al. Sapphire-fiber-based distributed high-temperature sensing system[J]. Optics Letters, 2016, 41(18): 4405-4408.

    [117] [117] GUO Y Q, XIA W, HU Z Z, et al. High-temperature sensor instrumentation with a thin-film-based sapphire fiber[J]. Applied Optics, 2017, 56(8): 2068-2073.

    [118] [118] TONG L M, SHEN Y H, YE L H, et al. A zirconia single-crystal fibre-optic sensor for contact measurement of temperatures above 2000 ℃[J]. Measurement Science and Technology, 1999, 10(7): 607-611.

    [119] [119] DAW J, REMPE J, PALMER J, et al. NEET in-pile ultrasonic sensor enablement-final report[R]. Office of Scientific and Technical Information (OSTI), 2014.

    [120] [120] LAURIE M, MAGALLON D, REMPE J, et al. Ultrasonic high-temperature sensors: past experiments and prospects for future use[J]. International Journal of Thermophysics, 2010, 31(8/9): 1417-1427.

    [121] [121] LIANG H J, YANG F B, YANG L, et al. Research and implementation of a 1800 ℃ sapphire ultrasonic thermometer[J]. Journal of Sensors, 2017, 2017: 1-7.

    [122] [122] WANG T, WANG H Y, ZHANG J, et al. Design and directional growth of (Mg1-xZnx)(Al1-yCry)2O4 single-crystal fibers for high-sensitivity and high-temperature sensing based on lattice doping engineering and acoustic anisotropy[J]. Advanced Functional Materials, 2021: 2103224.

    [123] [123] WEI Y L, GAO Y B, XIAO Z Q, et al. Ultrasonic Al2O3 ceramic thermometry in high-temperature oxidation environment[J]. Sensors, 2016, 16(11): 1905.

    CLP Journals

    [1] WANG Mengmeng, YIN Yanru, DING Xiaoyuan, ZHANG Jing, FU Xiuwei, JIA Zhitai, TAO Xutang. Research Progress of Sesquioxide Crystals and Its Laser Performances in the Band of 1~3 μm[J]. Journal of Synthetic Crystals, 2023, 52(7): 1169

    [2] WANG Tao, JIA Zhitai, LI Yang, ZHANG Jian, TAO Xutang. Growth of Ultrafine Single-Crystal Fibers by Laser Heated Pedestal Growth Technique[J]. Journal of Synthetic Crystals, 2022, 51(3): 428

    Tools

    Get Citation

    Copy Citation Text

    WANG Tao, JIA Zhitai, LI Yang, ZHANG Jian, TAO Xutang. Single-Crystal Fiber Growth and Single-Crystal Fiber High-Temperature Sensors: Review and Perspective[J]. Journal of Synthetic Crystals, 2021, 50(9): 1603

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 7, 2021

    Accepted: --

    Published Online: Nov. 8, 2021

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics