Chinese Journal of Lasers, Volume. 50, Issue 12, 1202202(2023)

Effects of Ultrasound on Distribution of Laser Melt Injected WC Reinforced Particles on Stainless Steel Substrate Surface

Zhehe Yao1,2,3, Fabo Wang1,2,3, Zhenqiang Sun1,2,3, Zhijun Chen1,2,3, Rong Liu4, and Jianhua Yao1,2,3、*
Author Affiliations
  • 1Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, China
  • 2College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, China
  • 3Collaborative Innovation Center of High-End Laser Manufacturing Equipment (National “2011 Plan”), Hangzhou 310023, Zhejiang, China
  • 4Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa KIS 5B6, Canada
  • show less
    References(43)

    [1] Ayers J D. Wear behavior of carbide-injected titanium and aluminum alloys[J]. Wear, 97, 249-266(1984).

    [2] Verezub O, Kálazi Z, Buza G et al. In-situ synthesis of a carbide reinforced steel matrix surface nanocomposite by laser melt injection technology and subsequent heat treatment[J]. Surface and Coatings Technology, 203, 3049-3057(2009).

    [3] Li L Q, Liu D J, Chen Y B et al. Electron microscopy study of reaction layers between single-crystal WC particle and Ti-6Al-4V after laser melt injection[J]. Acta Materialia, 57, 3606-3614(2009).

    [4] Farahmand P, Liu S, Zhang Z et al. Laser cladding assisted by induction heating of Ni-WC composite enhanced by nano-WC and La2O3[J]. Ceramics International, 40, 15421-15438(2014).

    [5] Wang J D, Li L Q, Tao W. Crack initiation and propagation behavior of WC particles reinforced Fe-based metal matrix composite produced by laser melting deposition[J]. Optics & Laser Technology, 82, 170-182(2016).

    [6] Xu B A, Jiang P, Wang Y L et al. Multi-physics simulation of wobbling laser melting injection of aluminum alloy with SiC particles: SiC particles gradient distribution in fusion zone[J]. International Journal of Heat and Mass Transfer, 182, 121960(2022).

    [7] Freiße H, Bohlen A, Seefeld T. Determination of the particle content in laser melt injected tracks[J]. Journal of Materials Processing Technology, 267, 177-185(2019).

    [8] Wang Y Y, Gong Y F, Sun T F et al. Effect of powder size and volume fraction of WC on the microstructure of laser cladding WC-NiCrBSi composite coatings[C], 105-109(2011).

    [9] Volpp J, Dietz T, Vollertsen F. Particle property impact on its distribution during laser deep alloying processes[J]. Physics Procedia, 56, 1094-1101(2014).

    [10] Hu D W, Liu Y, Chen H et al. Microstructure and properties of Ta-reinforced NiCuBSi + WC composite coating deposited on 5Cr5MoSiV1 steel substrate by laser cladding[J]. Optics & Laser Technology, 142, 107210(2021).

    [11] Kang R Q, Liu W J, Ma M X et al. The effect of rear earth oxides on particles distribution in laser cladding particles reinforced Ni-base composite coatings[J]. Applied Laser, 29, 374-378(2009).

    [12] Wang L, Yao J H, Hu Y et al. Influence of electric-magnetic compound field on the WC particles distribution in laser melt injection[J]. Surface and Coatings Technology, 315, 32-43(2017).

    [13] Hu Y, Wang L, Lou F X et al. Mechanism study of steady magnetic field effect on spherical WC particle distribution during laser melt injection[J]. Journal of Mechanical Engineering, 57, 240-248(2021).

    [14] Ida M, Naoe T, Futakawa M. Direct observation and theoretical study of cavitation bubbles in liquid mercury[J]. Physical Review E, 75, 046304(2007).

    [15] Madelin G, Grucker D, Franconi J M et al. Magnetic resonance imaging of acoustic streaming: absorption coefficient and acoustic field shape estimation[J]. Ultrasonics, 44, 272-278(2006).

    [16] Zhang Y, Guo Y Q, Chen Y et al. Microstructure and mechanical properties of Al-12Si alloys fabricated by ultrasonic-assisted laser metal deposition[J]. Materials, 13, 126(2019).

    [17] Li M Y, Zhang Q, Han B et al. Microstructure and property of Ni/WC/La2O3 coatings by ultrasonic vibration-assisted laser cladding treatment[J]. Optics and Lasers in Engineering, 125, 105848(2020).

    [18] Zhang D Z, Li Y Z, Wang H et al. Ultrasonic vibration-assisted laser directed energy deposition in situ synthesis of NiTi alloys: effects on microstructure and mechanical properties[J]. Journal of Manufacturing Processes, 60, 328-339(2020).

    [19] Gorunov A I, Nyukhlaev O A, Gilmutdinov A K. Investigation of microstructure and properties of low-carbon steel during ultrasonic-assisted laser welding and cladding[J]. The International Journal of Advanced Manufacturing Technology, 99, 2467-2479(2018).

    [20] Ning F D, Hu Y B, Cong W L. Microstructure and mechanical property of TiB reinforced Ti matrix composites fabricated by ultrasonic vibration-assisted laser engineered net shaping[J]. Rapid Prototyping Journal, 25, 581-591(2019).

    [21] Kolubaev A V, Sizova O V, Fortuna S V et al. Weld structure of low-carbon structural steel formed by ultrasonic-assisted laser welding[J]. Journal of Constructional Steel Research, 172, 106190(2020).

    [22] Tarasov S Y, Vorontsov A V, Fortuna S V et al. Ultrasonic-assisted laser welding on AISI 321 stainless steel[J]. Welding in the World, 63, 875-886(2019).

    [23] Wang X H, Liu S S, Zhao G L et al. In-situ formation ceramic particles reinforced Fe-based composite coatings produced by ultrasonic assisted laser melting deposition processing[J]. Optics & Laser Technology, 136, 106746(2021).

    [24] Xu W W, Bai X, Sun Z G et al. Correlation between laser-ultrasound and microstructural properties of laser melting deposited Ti6Al4V/B4C composites[J]. Metals, 11, 1951(2021).

    [25] Biswas S, Alavi S H, Harimkar S P. Effect of laser remelting and simultaneous application of ultrasonic vibrations during laser melting on the microstructural and tribological properties of laser clad Al-SiC composites[J]. Journal of Composites Science, 1, 13(2017).

    [26] Gao C, Wang Z, Xiao Z et al. Selective laser melting of TiN nanoparticle-reinforced AlSi10Mg composite: microstructural, interfacial, and mechanical properties[J]. Journal of Materials Processing Technology, 281, 116618(2020).

    [27] Lu X J. Microstructure regulation and performance studies on ultrasonic assisted laser remanufacturing of IN939 superalloy[D](2020).

    [28] Huang X H, Zhou Q, Zeng L et al. Monitoring spatial uniformity of particle distributions in manufacturing processes using the K function[J]. IEEE Transactions on Automation Science and Engineering, 14, 1031-1041(2017).

    [29] Kam K M, Zeng L, Zhou Q et al. On assessing spatial uniformity of particle distributions in quality control of manufacturing processes[J]. Journal of Manufacturing Systems, 32, 154-166(2013).

    [30] Brostow W, Dussault J P, Fox B L. Construction of Voronoi polyhedra[J]. Journal of Computational Physics, 29, 81-92(1978).

    [31] Okabe A, Suzuki A. Locational optimization problems solved through Voronoi diagrams[J]. European Journal of Operational Research, 98, 445-456(1997).

    [32] Peng Y H, Wang X G, Du Y et al. Using Voronoi tessellation and Delaunay triangulation to evaluate spatial uniformity of particle distribution[J]. Applied Mechanics and Materials, 614, 413-416(2014).

    [33] Zhu L B, Xiang X C, Du Y et al. Uniformity assessment of TRISO fuel particle distribution in spherical HTGR fuel element using Voronoi tessellation and Delaunay triangulation[J]. Science and Technology of Nuclear Installations, 2018, 7274261(2018).

    [34] Hu X D, Zhu X H, Hu Y et al. Effect of steady magnetic field on distribution and microstructure of sharp WC particle by laser melt injection[J]. Surface Technology, 48, 54-61(2019).

    [35] Fu Y H, Huang T, Ye Y X et al. Influence of melt flow characteristics on textured bump forming[J]. Chinese Journal of Lasers, 46, 0702005(2019).

    [36] Lee C M, Park H, Yoo J et al. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr[J]. Applied Surface Science, 345, 286-294(2015).

    [37] Zhou S F, Dai X Q, Zheng H Z. Microstructure and wear resistance of Fe-based WC coating by multi-track overlapping laser induction hybrid rapid cladding[J]. Optics & Laser Technology, 44, 190-197(2012).

    [38] Aldas K, Mat M D. Experimental and theoretical analysis of particle distribution in particulate metal matrix composites[J]. Journal of Materials Processing Technology, 160, 289-295(2005).

    [39] Zhou S F, Zeng X Y, Hu Q W et al. Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization[J]. Applied Surface Science, 255, 1646-1653(2008).

    [40] Sun C J, Saffari P, Sadeghipour K et al. Effects of particle arrangement on stress concentrations in composites[J]. Materials Science and Engineering: A, 405, 287-295(2005).

    [41] Chen W T, Dickey E C. Indentation-induced deformation mechanisms in laser-processed directionally solidified WC-W2C eutectoids[J]. Journal of Materials Science, 52, 5511-5519(2017).

    [42] Liu D J, Chen Y B, Li L Q et al. In situ investigation of fracture behavior in monocrystalline WCp-reinforced Ti-6Al-4V metal matrix composites produced by laser melt injection[J]. Scripta Materialia, 59, 91-94(2008).

    [43] Ignat S, Sallamand P, Nichici A et al. MoSi2 laser cladding: elaboration, characterisation and addition of non-stabilized ZrO2 powder particles[J]. Intermetallics, 11, 931-938(2003).

    Tools

    Get Citation

    Copy Citation Text

    Zhehe Yao, Fabo Wang, Zhenqiang Sun, Zhijun Chen, Rong Liu, Jianhua Yao. Effects of Ultrasound on Distribution of Laser Melt Injected WC Reinforced Particles on Stainless Steel Substrate Surface[J]. Chinese Journal of Lasers, 2023, 50(12): 1202202

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Surface Machining

    Received: Sep. 28, 2022

    Accepted: Oct. 17, 2022

    Published Online: Jun. 6, 2023

    The Author Email: Yao Jianhua (laser@zjut.edu.cn)

    DOI:10.3788/CJL221114

    Topics