Laser & Optoelectronics Progress, Volume. 57, Issue 22, 221017(2020)

Point Clouds Classification Algorithm Based on Cloth Filtering Algorithm and Improved Random Forest

Doudou Xue1、*, Yinglei Cheng1, Xiaosong Shi1, Xianxiang Qin1, and Pei Wen1,2
Author Affiliations
  • 1Information and Navigation College, Air Force Engineering University, Xi'an, Shaanxi 710077, China
  • 2The 93575 Unit, Chengde, Hebei 067000, China
  • show less
    References(19)

    [1] Zeng Q H, Mao J H, Li X H et al. Application of the hierarchy classification to point cloud of airborne LIDAR[J]. Science of Surveying and Mapping, 33, 103-105, 249(2008).

    [2] Niemeyer J, Mallet C, Rottensteiner F, Remote Sensing, Spatial Information Sciences et al. XXXVIII-, 4/W19, 209-214(2012).

    [3] Niemeyer J, Rottensteiner F, Soergel U. Classification of urban LiDAR data using conditional random field and random forests[C]//Joint Urban Remote Sensing Event 2013. April 21-23, 2013, Sao Paulo, Brazil., 139-142(2013).

    [5] Vosselman G. Gorte B G H, Sithole G, et al. Recognising structure in laser scanner point clouds[M]. Thies M, Koch B, Spiecker H, et al, ISPRS 2004 : proceedings of the ISPRS working group VIII/2 : laser scanning for forest and landscape assessment, Freiburg, October 3-6, 2004. Freiburg: University o, 33-38(2004).

    [6] Kilian J, Haala N, Englich M. Capture and evaluation of airborne laser scanner data[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 31, 383-388(1996).

    [7] Sithole G, Vosselman G. Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 59, 85-101(2004).

    [8] Zhang W M, Qi J B, Wan P et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 8, 501(2016).

    [9] Meng X L, Wang L, Currit N. Morphology-based building detection from airborne lidar data[J]. Photogrammetric Engineering & Remote Sensing, 75, 437-442(2009).

    [13] Battiti R. Using mutual information for selecting features in supervised neural net learning[J]. IEEE Transactions on Neural Networks, 5, 537-550(1994).

    [15] Zhang R, Li G Y, Li M L et al[J]. Classification of LiDAR point clouds based on PCA-BP algorithm Bulletin of Surveying and Mapping, 2014, 23-26.

    [17] Mohd Salleh M R, Abd Rahman M Z, Ismail Z et al. Revised progressive morphological method for ground point classification of airborne lidar data[J]. International Journal of Built Environment and Sustainability, 6, 31-38(2019).

    [18] Cao Q, Zhong Y F, Ma A L et al. Urban land use/land cover classification based on feature fusion fusing hyperspectral image and lidar data[C]//IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. July 22-27, 8869-8872(2018).

    [19] García-Sopo M Á, Cuartero A, Rodríguez P G et al. Hyperspectral and lidar data integration and classification[C]//2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). July 26-31, 2015, Milan, Italy., 57-60(2015).

    CLP Journals

    [1] ZHANG Xinyi, CHEN Maolin, LIU Xiangjiang, JI Cuicui, ZHAO Lidu. Classification of terrestrial point cloud considering point density and unknown angular resolution[J]. Laser Technology, 2023, 47(1): 59

    Tools

    Get Citation

    Copy Citation Text

    Doudou Xue, Yinglei Cheng, Xiaosong Shi, Xianxiang Qin, Pei Wen. Point Clouds Classification Algorithm Based on Cloth Filtering Algorithm and Improved Random Forest[J]. Laser & Optoelectronics Progress, 2020, 57(22): 221017

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Feb. 1, 2020

    Accepted: Mar. 6, 2020

    Published Online: Nov. 5, 2020

    The Author Email: Doudou Xue (1447551957@qq.com)

    DOI:10.3788/LOP57.221017

    Topics