Journal of Atmospheric and Environmental Optics, Volume. 18, Issue 1, 59(2023)

Improvement of PM2.5 predictions via variational assimilation of Himawari-8 satellite AOD product

SUN Erchang1,2, MA Jinji1,2、*, WU Wenhan1,2, YANG Guang1,2, and GUO Jinyu1,2
Author Affiliations
  • 1College of Geography and Tourism, Anhui Normal University, Wuhu 241002, China
  • 2Engineering Technology Research Center of Resources Environment and Geographic Information System of Anhui Province,Wuhu 241002, China
  • show less
    References(32)

    [1] Xue T, Liu J, Zhang Q et al. Rapid improvement of PM2.5 pollution and associated health benefits in China during 2013―2017[J]. Science China Earth Sciences, 04, 441-452(2020).

    [2] Wang J K, Zhang H D, Gui H L et al. Relationship between atmospheric visibility and PM2.5 concentrations and distributions[J]. Environmental Science, 40, 2985-2993(2019).

    [3] Rosenfeld D, Zhu Y N, Wang M H et al. Aerosol-driven droplet concentrations dominate coverage and water of oceanic low-level clouds[J]. Science, 363, eaav0566(2019).

    [4] Li Z Q. Impact of aerosols on the weather, climate and environment of China: An overview[J]. Transactions of Atmospheric Sciences, 43, 76-92(2020).

    [5] Xue W B, Wang J N, Yang J T et al. Domestic and foreign research progress of air quality model[J]. Environment and Sustainable Development, 38, 14-20(2013).

    [6] Srivastava R, Bran S H. Impact of dynamical and microphysical schemes on black carbon prediction in a regional climate model over India[J]. Environmental Science and Pollution Research, 25, 14844-14855(2018).

    [7] Gilliam R C, Hogrefe C, Godowitch J M et al. Impact of inherent meteorology uncertainty on air quality model predictions[J]. Journal of Geophysical Research: Atmospheres, 120, 12259-12280(2015).

    [8] Derwent R G. Monte Carlo analyses of the uncertainties in the predictions from global tropospheric ozone models: Tropospheric burdens and seasonal cycles[J]. Atmospheric Environment, 231, 117545(2020).

    [9] Hu Y W, Zang Z L, Ma X Y et al. Research on the effects of assimilation meteorological observation data on aerosol concentration[J]. China Environmental Science, 39, 523-532(2019).

    [10] Bocquet M, Elbern H, Eskes H et al. Data assimilation in atmospheric chemistry models: Current status and future prospects for coupled chemistry meteorology models[J]. Atmospheric Chemistry and Physics, 15, 5325-5358(2015).

    [11] Zhu J, Tang X, Wang Z F et al. A review of air quality data assimilation methods and their application[J]. Chinese Journal of Atmospheric Sciences, 42, 607-620(2018).

    [12] Li X, Liu F, Fang M. Hamonizing models and observations: Data assimilation in Earth system science[J]. Science China Earth Sciences, 50, 1185-1194(2020).

    [13] Feng S Z, Jiang F, Jiang Z. Impact of 3DVAR assimilation of surface PM2.5 observations on PM2.5 forecasts over China during wintertime[J]. Atmospheric Environment, 187, 34-49(2018).

    [14] Werner M, Kryza M, Pagowski M. Assimilation of PM2.5 ground base observations to two chemical schemes in WRF-Chem—The results for the winter and summer period[J]. Atmospheric Environment, 200, 178-189(2019).

    [15] Bessho K, Date K J, Hayashi M et al. An introduction to Himawari-8/9—Japan's new-generation geostationary meteorological satellites[J]. Journal of the Meteorological Society of Japan Ser II, 94, 151-183(2016).

    [16] Zhang T X, Zang L, Mao F Y et al. Evaluation of Himawari-8/AHI, MERRA-2, and CAMS aerosol products over China[J]. Remote Sensing, 12, 1684(2020).

    [17] Wei H N, Wang W Z, Xu F N et al. Evaluation and application of the Himawari-8 aerosol products[J]. Remote Sensing Technology and Application, 34, 1005-1015(2019).

    [18] Zhao L, Xin J Y, Yang L K et al. Validation analysis of Himawari-8 aerosol optical depth products[J]. Chinese Journal of Atmospheric Sciences, 44, 455-471(2020).

    [19] Hong J, Mao F, Min Q. Improved PM2.5 predictions of WRF-Chem via the integration of Himawari-8 satellite data and ground observations[J]. Environmental Pollution, 263, 114451(2020).

    [20] Yumimoto K, Nagao T M, Kikuchi M et al. Aerosol data assimilation using data from Himawari-8, a next-generation geostationary meteorological satellite[J]. Geophysical Research Letters, 43, 5886-5894(2016).

    [21] Xia X L, Min J, Shen F et al. Aerosol data assimilation using data from Fengyun-4A, a next-generation geostationary meteorological satellite[J]. Atmospheric Environment, 237, 117695(2020).

    [22] Yao F, Wu J S, Li W F et al. Estimating daily PM2.5 concentrations in Beijing using 750-m VIIRS IP AOD retrievals and a nested spatiotemporal statistical model[J]. Remote Sensing, 11, 841-860(2019).

    [23] Grell G A, Peckham S E, Schmitz R et al. Fully coupled "online" chemistry within the WRF model[J]. Atmospheric Environment, 39, 6957-6975(2005).

    [24] Pagowski M, Grell G A, McKeen S A et al. Three-dimensional variational data assimilation of ozone and fine particulate matter observations: Some results using the Weather Research and Forecasting-Chemistry model and Grid-point Statistical Interpolation[J]. Quarterly Journal of the Royal Meteorological Society, 136, 2013-2024(2010).

    [25] Ma J W, Qin S X. Recent advances and development of data assimilation algorithms[J]. Advances in Earth Science, 27, 747-757(2012).

    [26] Pagowski M, Liu Z, Grell G A et al. Implementation of aerosol assimilation in gridpoint statistical interpolation (v. 3.2) and WRF-chem (v. 3.4.1)[J]. Geoscientific Model Development, 7, 1621-1627(2014).

    [27] Descombes G, Auligné T, Vandenberghe F et al. Generalized background error covariance matrix model (GEN_BE v2.0)[J]. Geoscientific Model Development, 8, 669-696(2015).

    [28] Zang Z L, Hao Z L, Li Y et al. Background error covariance with balance constraints for aerosol species and applications in variational data assimilation[J]. Geoscientific Model Development, 9, 2623-2638(2016).

    [29] Xu R, Gui H L, Jiang Q et al. Analysis of the December 2019 atmospheric circulation and weather[J]. Meteorological Monthly, 46, 441-448(2020).

    [30] Liu L Y, Zhang Y J, Li Y S et al. PM2.5 inversion using remote sensing data in Eastern China based on deep learning[J]. Environmental Science, 41, 1513-1519(2020).

    [31] Wang D, You W, Zang Z et al. A three-dimensional variational data assimilation system for a size-resolved aerosol model: Implementation and application for particulate matter and gaseous pollutant forecasts across China[J]. Scientia Sinica (Terrae), 50, 1302-1315(2020).

    [32] Jiang Z, Liu Z, Wang T et al. Probing into the impact of 3DVAR assimilation of surface PM10 observations over China using process analysis[J]. Journal of Geophysical Research Atmospheres, 118, 6738-6749(2013).

    Tools

    Get Citation

    Copy Citation Text

    Erchang SUN, Jinji MA, Wenhan WU, Guang YANG, Jinyu GUO. Improvement of PM2.5 predictions via variational assimilation of Himawari-8 satellite AOD product[J]. Journal of Atmospheric and Environmental Optics, 2023, 18(1): 59

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 15, 2020

    Accepted: --

    Published Online: Apr. 17, 2023

    The Author Email: Jinji MA (jinjima@ahnu.edu.cn)

    DOI:10.3969/j.issn.1673-6141.2023.01.006

    Topics