PhotoniX, Volume. 4, Issue 1, 2(2023)

Enhancing image resolution of confocal fluorescence microscopy with deep learning

Boyi Huang1,†... Jia Li1,†, Bowen Yao1, Zhigang Yang1, Edmund Y. Lam2, Jia Zhang1,*, Wei Yan1,** and Junle Qu1,*** |Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 2Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam, Hong Kong SAR, China
  • show less
    References(38)

    [8] [8] Yang Z, Sharma A, Qi J, Peng X, Lee DY, Hu R, Lin D, Qu J. J Seung Kim, “Super-resolution fluorescent materials: an insight into design and bioimaging applications.” Chem Soc Rev. 2016;45:4651–67.

    [11] [11] Patterson J. A Gibson, deep learning: a Practitioner’s approach: O’Reilly Media; 2017.

    [19] [19] O Ronneberger, P Fischer, T Brox, “U-net: convolutional networks for biomedical image segmentation,” arXiv: 1505.04597 (2015).

    [20] [20] Maas AL, Hannun AY, Ng AY. Rectifier nonlinearities improve neural network acoustic model. In: 30th International Conference on Machine Learning (ICML). Atlanta: IMLS; 2013. p. 6–11.

    [22] [22] D Hendrycks, K Gimpel, “Gaussian error linear units (GELUs),” arXiv: 1606.08415 (2016).

    [23] [23] Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. In: 14th International Conference on Artificial Intelligence and Statistics (AISTATS). Fort Lauderdale: Society for Artificial Intelligence and Statistics; 2011.

    [25] [25] DP Kingma, J Ba, “Adam: a method for stochastic optimization,” arXiv: 1412.6980 (2014).

    [26] [26] Paszke A. Automatic differentiation in PyTorch. In: in 31st Conference on Neural Information Processing Systems. Long Beach: NeurIPS Foundation; 2017.

    [31] [31] IJ Goodfellow, J Pouget-Abadie, M Mirza, B Xu, D Warde-Farley, S Ozair, A Courville, Y Bengio, “Generative adversarial networks,” arXiv: 1406.2661 (2014).

    [33] [33] Zhao H, Gallo O, Frosio I, Kautz J. Loss functions for image restoration with neural networks. IEEE T Comput Imag. 2017;3(1):47–57.

    Tools

    Get Citation

    Copy Citation Text

    Boyi Huang, Jia Li, Bowen Yao, Zhigang Yang, Edmund Y. Lam, Jia Zhang, Wei Yan, Junle Qu. Enhancing image resolution of confocal fluorescence microscopy with deep learning[J]. PhotoniX, 2023, 4(1): 2

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jul. 8, 2022

    Accepted: Nov. 14, 2022

    Published Online: Jul. 10, 2023

    The Author Email: Jia Zhang (julyzhang2021@163.com), Wei Yan (weiyan@szu.edu.cn), Junle Qu (jlqu@szu.edu.cn)

    DOI:10.1186/s43074-022-00077-x

    Topics