Chinese Optics, Volume. 15, Issue 6, 1258(2022)

Multi-target panoramic digital pathology: from principle to application

Xin-hua ZHANG1, Cai-wei LI1, Yu ZHANG1, Sheng-nan HUANG1, Han SHI2, Jun-nan WU1, Shi-jie REN2, Ke-han LIU1, Tong-lu GAO1, and Bing SHI1、*
Author Affiliations
  • 1Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570100, China
  • 2School of Computer Science and Technology, Hainan University, Haikou 570100, China
  • show less
    References(117)

    [1] GRIFFIN J, TREANOR D. Digital pathology in clinical use: where are we now and what is holding us back?[J]. Histopathology, 70, 134-145(2017).

    [2] BERA K, SCHALPER K A, RIMM D L, et al. Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology[J]. Nature Reviews Clinical Oncology, 16, 703-715(2019).

    [3] [3] HUANG ZH ZH, CAO L C. Multichannel multiplexing digital holographic imaging f high throughput[J]. Chinese Optics, doi: 10.37188CO.20220070. (in chinese)

    [4] JAGGI B, POON S S S, MACAULAY C, et al. Imaging system for morphometric assessment of absorption or fluorescence in stained cells[J]. Cytometry, 9, 566-572(1988).

    [5] FURNESS P N. The use of digital images in pathology[J]. The Journal of Pathology, 183, 253-263(1997).

    [6] KRUPINSKI E A. Optimizing the pathology workstation "cockpit": challenges and solutions[J]. Journal of Pathology Informatics, 1, 19(2010).

    [7] GUZMAN M, JUDKINS A R. Digital pathology: a tool for 21st century neuropathology[J]. Brain Pathology, 19, 305-316(2009).

    [8] NIAZI M K K, TAVOLARA T E, AROLE V, et al. Identifying tumor in pancreatic neuroendocrine neoplasms from Ki67 images using transfer learning[J]. PloS one, 13, e0195621(2018).

    [9] MADABHUSHI A. Digital pathology image analysis: opportunities and challenges[J]. Imaging in Medicine, 1, 7-10(2009).

    [10] HUANG Y S, CHOU P R, CHEN H M, et al. One-stage pulmonary nodule detection using 3-D DCNN with feature fusion and attention mechanism in CT image[J]. Computer Methods and Programs in Biomedicine, 220, 106786(2022).

    [11] BIZOT A, KARIMI M, RASSY E, et al. Multicenter evaluation of breast cancer patients’ satisfaction and experience with oncology telemedicine visits during the COVID-19 pandemic[J]. British Journal of Cancer, 125, 1486-1493(2021).

    [12] PANTANOWITZ L, VALENSTEIN P N, EVANS A J, et al. Review of the current state of whole slide imaging in pathology[J]. Journal of Pathology Informatics, 2, 36(2011).

    [13] JAHN S W, PLASS M, MOINFAR F. Digital pathology: advantages, limitations and emerging perspectives[J]. Journal of Clinical Medicine, 9, 3697(2020).

    [14] MA B, ZIMMERMANN T, ROHDE M, et al. Use of autostitch for automatic stitching of microscope images[J]. Micron, 38, 492-499(2007).

    [15] LEGESSE F B, CHERNAVSKAIA O, HEUKE S, et al. Seamless stitching of tile scan microscope images[J]. Journal of Microscopy, 258, 223-232(2015).

    [16] DESHPANDE S, MINHAS F, GRAHAM S, et al. SAFRON: stitching across the frontier network for generating colorectal cancer histology images[J]. Medical Image Analysis, 77, 102337(2022).

    [17] JACQUELOT N, SEILLET C, WANG M Y, et al. Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma[J]. Nature immunology, 22, 851-864(2021).

    [18] MAYNARD A, MCCOACH C E, ROTOW J K, et al. Therapy-induced evolution of human lung cancer revealed by single-cell RNA sequencing[J]. Cell, 182, 1232-1251.e22(2020).

    [19] KEREN L, BOSSE M, MARQUEZ D, et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging[J]. Cell, 174, 1373-1387.e19(2018).

    [20] BERRY S, GIRALDO N A, GREEN B F, et al. Analysis of multispectral imaging with the AstroPath platform informs efficacy of PD-1 blockade[J]. Science, 372, eaba2609(2021).

    [21] HENRY N L, HAYES D F. Cancer biomarkers[J]. Molecular Oncology, 6, 140-146(2012).

    [22] WANG J, SUN J W, LIU L N, et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy[J]. Nature Medicine, 25, 656-666(2019).

    [23] TANG K D, KENNY L, PERRY C, et al. The overexpression of salivary cytokeratins as potential diagnostic biomarkers in head and neck squamous cell carcinomas[J]. Oncotarget, 8, 72272-72280(2017).

    [24] HOLNESS C L, SIMMONS D L. Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins[J]. Blood, 81, 1607-1613(1993).

    [25] GOTTFRIED E, KUNZ-SCHUGHART L A, WEBER A, et al. Expression of CD68 in non-myeloid cell types[J]. Scandinavian Journal of Immunology, 67, 453-463(2008).

    [26] LIU CH Q, XU J, ZHOU ZH G, et al. Expression patterns of programmed death ligand 1 correlate with different microenvironments and patient prognosis in hepatocellular carcinoma[J]. British Journal of Cancer, 119, 80-88(2018).

    [27] KYTHREOTOU A, SIDDIQUE A, MAURI F A, et al. Pd-L1[J]. Journal of Clinical Pathology, 71, 189-194(2018).

    [28] WALTER R B, APPELBAUM F R, ESTEY E H, et al. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy[J]. Blood, 119, 6198-6208(2012).

    [29] KARED H, MARTELLI S, NG T P, et al. CD57 in human natural killer cells and T-lymphocytes[J]. Cancer Immunology, Immunotherapy, 65, 441-452(2016).

    [30] ROSS G D, VĚTVIČKA V. CR3 (CD11b, CD18): a phagocyte and NK cell membrane receptor with multiple ligand specificities and functions[J]. Clinical & Experimental Immunology, 92, 181-184(1993).

    [31] TEDDER T F, ENGEL P. CD20: a regulator of cell-cycle progression of B lymphocytes[J]. Immunology Today, 15, 450-454(1994).

    [32] BOROSS P, LEUSEN J H W. Mechanisms of action of CD20 antibodies[J]. American Journal of Cancer Research, 2, 676-690(2012).

    [33] FORDE P M, CHAFT J E, SMITH K N, et al. Neoadjuvant PD-1 Blockade in Resectable Lung Cancer[J]. New England Journal of Medicine, 378, 1976-1986(2018).

    [34] PATSOUKIS N, WANG Q, STRAUSS L, et al. Revisiting the PD-1 pathway[J]. Science Advances, 6, eabd2712(2020).

    [35] AHMADZADEH M, JOHNSON L A, HEEMSKERK B, et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired[J]. Blood, 114, 1537-1544(2009).

    [36] COLE D K, GAO G F. CD8: adhesion molecule, co-receptor and immuno-modulator[J]. Cellular & Molecular Immunology, 1, 81-88(2004).

    [37] TRIULZI T, TAGLIABUE E, BALSARI A, et al. FOXP3 expression in tumor cells and implications for cancer progression[J]. Journal of Cellular Physiology, 228, 30-35(2013).

    [38] MONTLER R, BELL R B, THALHOFER C, et al. OX40, PD-1 and CTLA-4 are selectively expressed on tumor-infiltrating T cells in head and neck cancer[J]. Clinical & Translational Immunology, 5, e70(2016).

    [39] CROFT M, SO T, DUAN W, et al. The significance of OX40 and OX40L to T-cell biology and immune disease[J]. Immunological Reviews, 229, 173-191(2009).

    [40] DONG D, ZHENG L Q, LIN J Q, et al. Structural basis of assembly of the human T cell receptor-CD3 complex[J]. Nature, 573, 546-552(2019).

    [41] SAVAS P, VIRASSAMY B, YE CH ZH, et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis[J]. Nature Medicine, 24, 986-993(2018).

    [42] ANZ D, MUELLER W, GOLIC M, et al. CD103 is a hallmark of tumor-infiltrating regulatory T cells[J]. International Journal of Cancer, 129, 2417-2426(2011).

    [43] [43] CARLOS F M. Pancreatic cancer: investigation of the prognostic significance of tum immunophenotype establishment of a novel exvivo tissue slice culture system f drug sensitivity testing[D]. Stockholm: Karolinska Institutet, 2021.

    [44] KANG C, QIAO Y, LI G, et al. Human organotypic cultured cardiac slices: new platform for high throughput preclinical human trials[J]. Scientific Reports, 6, 28798(2016).

    [45] MERZ F, GAUNITZ F, DEHGHANI F, et al. Organotypic slice cultures of human glioblastoma reveal different susceptibilities to treatments[J]. Neuro-Oncology, 15, 670-681(2013).

    [46] ZHANG K, HAO CH Y, MAN B Y, et al. Diagnosis of liver cancer based on tissue slice surface enhanced Raman spectroscopy and multivariate analysis[J]. Vibrational Spectroscopy, 98, 82-87(2018).

    [47] HAEHNEL S, REICHE K, LOEFFLER D, et al. Deep sequencing and automated histochemistry of human tissue slice cultures improve their usability as preclinical model for cancer research[J]. Scientific Reports, 9, 19961(2019).

    [48] INAMURA K. Update on immunohistochemistry for the diagnosis of lung cancer[J]. Cancers, 10, 72(2018).

    [49] NASR S H, FIDLER M E, SAID S M. Paraffin immunofluorescence: a valuable ancillary technique in renal pathology[J]. Kidney International Reports, 3, 1260-1266(2018).

    [50] BRUNNSTRÖM H, JOHANSSON A, WESTBOM-FREMER S, et al. PD-L1 immunohistochemistry in clinical diagnostics of lung cancer: inter-pathologist variability is higher than assay variability[J]. Modern Pathology, 30, 1411-1421(2017).

    [51] MEYERHOLZ D K, BECK A P. Principles and approaches for reproducible scoring of tissue stains in research[J]. Laboratory Investigation, 98, 844-855(2018).

    [52] TAN W C C, NERURKAR S N, CAI H Y, et al. Overview of multiplex immunohistochemistry /immunofluorescence techniques in the era of cancer immunotherapy[J]. Cancer Communications, 40, 135-153(2020).

    [53] ZRAZHEVSKIY P, GAO X. Quantum dot imaging platform for single-cell molecular profiling[J]. Nature Communication, 4, 1619(2013).

    [54] GOLTSEV Y, SAMUSIK N, KENNEDY-DARLING J, et al. Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed Imaging[J]. Cell, 174, 968-981.e15(2018).

    [55] REMARK R, MERGHOUB T, GRABE N, et al. In-depth tissue profiling using multiplexed immunohistochemical consecutive staining on single slide[J]. Science Immunology, 1, aaf6925(2016).

    [56] ZHANG W J, HUBBARD A, JONES T, et al. Fully automated 5-plex fluorescent immunohistochemistry with tyramide signal amplification and same species antibodies[J]. Laboratory Investigation, 97, 873-885(2017).

    [57] GERDES M J, SEVINSKY C J, SOOD A, et al. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue[J]. Proceedings of the National Academy of Sciences of the United States of America, 110, 11982-11987(2013).

    [58] JEŽ M, BAS T, VEBER M, et al. The hazards of DAPI photoconversion: effects of dye, mounting media and fixative, and how to minimize the problem[J]. Histochemistry and Cell Biology, 139, 195-204(2013).

    [59] KOBAYASHI H, CHOYKE P L, OGAWA M. Monoclonal antibody-based optical molecular imaging probes; considerations and caveats in chemistry, biology and pharmacology[J]. Current Opinion in Chemical Biology, 33, 32-38(2016).

    [60] GEBHARDT C, LEHMANN M, REIF M M, et al. Molecular and spectroscopic characterization of green and red cyanine fluorophores from the alexa fluor and AF series[J]. ChemPhysChem, 22, 1566-1583(2021).

    [61] SARKAR P, SRIDHARAN S, LUCHOWSKI R, et al. Photophysical properties of a new DyLight 594 dye[J]. Journal of Photochemistry and Photobiology B:Biology, 98, 35-39(2010).

    [62] WANG Y X, BAI ZH H, WANG Q, et al. Experimental investigations on fluorescence excitation and depletion of carbon dots[J]. Journal of Fluorescence, 27, 1435-1441(2017).

    [63] BATES M, HUANG B, DEMPSEY G T, et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J]. Science, 317, 1749-1753(2007).

    [64] ZHANG Y D, SCHROEDER L K, LESSARD M D, et al. Nanoscale subcellular architecture revealed by multicolor three-dimensional salvaged fluorescence imagingimaging[J]. Nature Methods, 17, 225-231(2020).

    [65] DEMPSEY G T, VAUGHAN J C, CHEN K H, et al. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging[J]. Nature Methods, 8, 1027-1036(2011).

    [66] MATHEW S K, BAYANNA A R, TIWARY A R, et al. First observations from the multi-application solar telescope (MAST) narrow-band imager[J]. Solar Physics, 292, 106(2017).

    [67] PISANI M, ZUCCO M. Compact imaging spectrometer combining Fourier transform spectroscopy with a Fabry-Perot interferometer[J]. Optics Express, 17, 8319-8331(2009).

    [68] SINCLAIR M B, TIMLIN J A, HAALAND D M, et al. Design, construction, characterization, and application of a hyperspectral microarray scanner[J]. Applied Optics, 43, 2079-2088(2004).

    [69] MLODZIANOSKI M J, CURTHOYS N M, GUNEWARDENE M S, et al. Super-resolution imaging of molecular emission spectra and single molecule spectral fluctuations[J]. PloS one, 11, e0147506(2016).

    [70] JAHR W, SCHMID B, SCHMIED C, et al. Hyperspectral light sheet microscopy[J]. Nature communications, 6, 7990(2015).

    [71] YAMASHITA T, KINOSHITA H, SAKAGUCHI T, et al. Objective tumor distinction in 5-aminolevulinic acid-based endoscopic photodynamic diagnosis, using a spectrometer with a liquid crystal tunable filter[J]. Annals of Translational Medicine, 8, 178(2020).

    [72] XU Z F, ZHAO H J, JIA G R, et al. Optical schemes of super-angular AOTF-based imagers and system response analysis[J]. Optics Communications, 498, 127204(2021).

    [73] LIU CH H, CHANG Y C, NORRIS T B, et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature[J]. Nature Nanotechnology, 9, 273-278(2014).

    [74] VALM A M, COHEN S, LEGANT W R, et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome[J]. Nature, 546, 162-167(2017).

    [75] GHAZNAVI F, EVANS A, MADABHUSHI A, et al. Digital imaging in pathology: whole-slide imaging and beyond[J]. Annual Review of Pathology-Mechanisms of Disease, 8, 331-359(2013).

    [76] PANTANOWITZ L, DICKINSON K, EVANS A J, et al. American Telemedicine Association clinical guidelines for telepathology[J]. Journal of Pathology Informatics, 5, 39(2014).

    [77] FARAHANI N, PARWANI A V, PANTANOWITZ L. Whole slide imaging in pathology: advantages, limitations, and emerging perspectives[J]. Pathology and Laboratory Medicine International, 7, 23-33(2015).

    [78] ROJO M G, GARCíA G B, MATEOS C P, et al. Critical comparison of 31 commercially available digital slide systems in pathology[J]. International Journal of Surgical Pathology, 14, 285-305(2006).

    [79] LIAO J, BIAN L H, BIAN Z CH, et al. Single-frame rapid autofocusing for brightfield and fluorescence whole slide imaging[J]. Biomedical Optics Express, 7, 4763-4768(2016).

    [80] [80] HAMAMATSU. NanoZoomer[EBOL]. [20221108].https:www.hamamatsu.com.cncnzhcnproductlifesciencemedicalsystemsdigitalslidescannerC1314001.html.

    [81] [81] 3DHISTECH. Pannamic 250 Flash III[EBOL]. [20221108].https:www.3dhistech.comresearchpannamicdigitalslidescannerspannamic250flashiii.

    [82] [82] AFEWK A, BEYNON M D, BUSTAMANTE F, et al. . Digital dynamic telepathologythe Virtual Microscope[C]. Proceedings American Medical Infmatics Association Annual Symposium, AMIA, 1998: 912916.

    [83] AMIN W, SRINTRAPUN S J, PARWANI A V. Automated whole slide imaging[J]. Expert Opinion on Medical Diagnostics, 2, 1173-1181(2008).

    [84] [84] OLYMPUS. VS200[EBOL]. [20220505]. https:www.olympuslifescience.com.cnzhdownloadsdetail0[downloads][id]=847252676.

    [85] [85] ZEISS. Axio Scan. Z1[EBOL]. [20221108].https:www.zeiss.commicroscopyuslocalzenknowledgebasehomezenknowledgebaseaxioscan.html.

    [86] PLATTARD D, SORET M, TROCCAZ J, et al. Patient set-up using portal images: 2D/2D image registration using mutual information[J]. Computer Aided Surgery, 5, 246-262(2000).

    [87] BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features (SURF)[J]. Computer Vision and Image Understanding, 110, 346-359(2008).

    [88] GHOSH D, KAABOUCH N. A survey on image mosaicing techniques[J]. Journal of Visual Communication and Image Representation, 34, 1-11(2016).

    [89] [89] Government Procurement wk. Procurement Medical Equipment Bidding Project of Southern Medical University Southern Hospital [EBOL]. (20220302)[20221108]. http:www.ccgp.gov.cncgggdfgggkzb202203t20220302_17632544.htm.

    [90] STATHONIKOS N, NGUYEN T Q, SPOTO C P, et al. Being fully digital: perspective of a Dutch academic pathology laboratory[J]. Histopathology, 75, 621-635(2019).

    [91] NIAZI M K K, PARWANI A V, GURCAN M N. Digital pathology and artificial intelligence[J]. The Lancet Oncology, 20, e253-e261(2019).

    [92] SALVI M, MOLINARO L, METOVIC J, et al. Fully automated quantitative assessment of hepatic steatosis in liver transplants[J]. Computers in Biology and Medicine, 123, 103836(2020).

    [93] [93] BNDI P, VAN DE LOO R, INTEZAR M, et al. . Comparison of different methods f tissue segmentation in histopathological wholeslide images[C]. 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), IEEE, 2017: 591595.

    [94] [94] WU H, PHAN J H, BHATIA A K, et al. . Detection of blur artifacts in histopathological wholeslide images of endomyocardial biopsies[C]. 2015 37th Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), IEEE, 2015: 727730.

    [95] SALVI M, ACHARYA U R, MOLINARI F, et al. The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis[J]. Computers in Biology and Medicine, 128, 104129(2021).

    [96] ARESTA G, ARAÚJO T, KWOK S, et al. BACH: Grand challenge on breast cancer histology images[J]. Medical Image Analysis, 56, 122-139(2019).

    [97] [97] CIREAN D C, GIUSTI A, GAMBARDELLA L M, et al. . Mitosis detection in breast cancer histology images with deep neural wks[C]. 16th International Conference on Medical Image Computing ComputerAssisted Intervention, Springer, 2013: 411418.

    [98] [98] CHEN T, CHEFD’HOTEL C. Deep Learning Based Automatic Immune Cell Detection f Immunohistochemistry Images[C]. 5th International Wkshop on Machine Learning in Medical Imaging, Springer, 2014: 1724.

    [99] HUANG G H, LI ZH W, WANG CH M. Analysis of peripheral blood lymphocyte subsets in multiple myeloma patients with different immunophenotypes[J]. Cancer Research and Clinic, 30, 176-179(2018).

    [100] KOELZER V H, GISLER A, HANHART J C, et al. Digital image analysis improves precision of PD-L1 scoring in cutaneous melanoma[J]. Histopathology, 73, 397-406(2018).

    [101] SUN D CH, GUAN X N, MORAN A E, et al. Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing data[J]. Nature Biotechnology, 40, 527-538(2022).

    [102] HARDER N, SCHöNMEYER R, NEKOLLA K, et al. Automatic discovery of image-based signatures for ipilimumab response prediction in malignant melanoma[J]. Scientific Reports, 9, 7449(2019).

    [103] HUANG W, HENNRICK K, DREW S. A colorful future of quantitative pathology: validation of Vectra technology using chromogenic multiplexed immunohistochemistry and prostate tissue microarrays[J]. Human Pathology, 44, 29-38(2013).

    [104] OGUEJIOFOR K, HALL J, SLATER C, et al. Stromal infiltration of CD8 T cells is associated with improved clinical outcome in HPV-positive oropharyngeal squamous carcinoma[J]. British Journal of Cancer, 113, 886-893(2015).

    [105] FAILMEZGER H, MURALIDHAR S, RULLAN A, et al. Topological tumor graphs: a graph-based spatial model to infer stromal recruitment for immunosuppression in melanoma histology[J]. Cancer Research, 80, 1199-1209(2020).

    [106] BARUA S, FANG P, SHARMA A, et al. Spatial interaction of tumor cells and regulatory T cells correlates with survival in non-small cell lung cancer[J]. Lung Cancer, 117, 73-79(2018).

    [107] ISHII G, OCHIAI A, NERI S. Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment[J]. Advanced Drug Delivery Reviews, 99, 186-196(2016).

    [108] WOOD S L, PERNEMALM M, CROSBIE P A, et al. The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets[J]. Cancer Treatment Reviews, 40, 558-566(2014).

    [109] SCHULZ D, ZANOTELLI V R T, FISCHER J R, et al. Simultaneous multiplexed imaging of mRNA and proteins with subcellular resolution in breast cancer tissue samples by mass cytometry[J]. Cell Systems, 6, 25-36.e5(2018).

    [110] CASCONE T, WILLIAM W N, WEISSFERDT A, et al. Neoadjuvant nivolumab or nivolumab plus ipilimumab in operable non-small cell lung cancer: the phase 2 randomized NEOSTAR trial[J]. Nature Medicine, 27, 504-514(2021).

    [111] OBRADOVIC A, CHOWDHURY N, HAAKE S M, et al. Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages[J]. Cell, 184, 2988-3005.e16(2021).

    [112] ZHAO J, FU L. Molecular classification of breast cancer[J]. Chinese Journal of Breast Diseases (Electronic Edition), 3, 195-203(2009).

    [113] HU ZH Y, FAN CH, OH D S, et al. The molecular portraits of breast tumors are conserved across microarray platforms[J]. BMC Genomics, 7, 96(2006).

    [114] HELMINK B A, REDDY S M, GAO J J, et al. B cells and tertiary lymphoid structures promote immunotherapy response[J]. Nature, 577, 549-555(2020).

    [115] PARRA E R, FRANCISCO-CRUZ A, WISTUBA I I. State-of-the-art of profiling immune contexture in the era of multiplexed staining and digital analysis to study paraffin tumor tissues[J]. Cancers, 11, 247(2019).

    [116] TAUBE J M, AKTURK G, ANGELO M, et al. The Society for Immunotherapy of Cancer statement on best practices for multiplex immunohistochemistry (IHC) and immunofluorescence (IF) staining and validation[J]. Journal for Immunotherapy of Cancer, 8, e000155(2020).

    [117] CHEN K, YAN R, XIANG L M, et al. Excitation spectral microscopy for highly multiplexed fluorescence imaging and quantitative biosensing[J]. Light:Science & Applications, 10, 97(2021).

    Tools

    Get Citation

    Copy Citation Text

    Xin-hua ZHANG, Cai-wei LI, Yu ZHANG, Sheng-nan HUANG, Han SHI, Jun-nan WU, Shi-jie REN, Ke-han LIU, Tong-lu GAO, Bing SHI. Multi-target panoramic digital pathology: from principle to application[J]. Chinese Optics, 2022, 15(6): 1258

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Review

    Received: May. 9, 2022

    Accepted: --

    Published Online: Feb. 9, 2023

    The Author Email:

    DOI:10.37188/CO.2022-0091

    Topics