Journal of Infrared and Millimeter Waves, Volume. 42, Issue 6, 815(2023)

Novel local calibration optimization from soil mid-infrared spectral library

Jia-Li SHEN1, Song-Chao CHEN2,3, Yong-Sheng HONG3, and Shuo LI1,4、*
Author Affiliations
  • 1Key Laboratory for Geographical Process Analysis & Simulation of Hubei Province,Central China Normal University,Wuhan 430079,China
  • 2ZJU-Hangzhou Global Scientific and Technological Innovation Center,Hangzhou 311200,China
  • 3Institute of Remote Sensing and Information Technology,Zhejiang University,Hangzhou 310058,China
  • 4Key Laboratory of Spectroscopy Sensing,Ministry of Agriculture and Rural Affairs,Hangzhou 310058,China
  • show less
    References(24)

    [1] Kumar M, Jain V. Mid-infrared spectroscopy for fast, accurate and reliable soil analysis[J]. Trends in Analytical Chemistry, 103, 216-224(2018).

    [2] Fang H, Zhou K, Wang S et al. Soil fertility analysis based on mid-infrared spectroscopy[J]. International Agrophysics, 32, 553-563(2018).

    [3] Ge Y, Wadoux A, Peng Y[M]. A primer on soil analysis using visible and near-infrared (vis-NIR) and mid-infrared (MIR) spectroscopy(2022).

    [4] Shi Z, Wang Q L, Peng J et al. Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations[J]. Science China: Earth Sciences, 44, 978-988(2014).

    [5] Orgiazzi A, Ballabio C, Panagos P et al. LUCAS Soil, the largest expandable soil dataset for Europe: a review[J]. European Journal of Soil Science, 69, 140-153(2018).

    [6] Viscarra Rossel R A, Behrens T, Ben-Dor E et al. A global spectral library to characterize the world's soil[J]. Earth-Science Reviews, 155, 198-230(2016).

    [7] Hong Y, Munnaf M A, Guerrero A et al. Fusion of visible-to-near-infrared and mid-infrared spectroscopy to estimate soil organic carbon[J]. Soil and Tillage Research, 217, 105284(2022).

    [8] Chen S C, Peng J, Ji W J et al. Study on the characterization of VNIR-MIR spectra and prediction of soil organic matter in paddy soil[J]. Spectroscopy and Spectral Analysis, 36, 1712-1716(2016).

    [9] Meng X X, Yu L, Zhou Y et al. Predicting organic carbon using datafusion of visible near-infrared and middle infrared spectra by proximal soil sensing[J]. Chinese Journal of Soil Science, 53, 301-307(2022).

    [10] Ji W J, Shi Z, Zhou Q et al. VIS-NIR reflectance spectroscopy of the organic matter in several types of soils[J]. Journal of Infrared and Millimeter Waves, 31, 277-282(2012).

    [11] Terhoeven-Urselmans T, Vagen T G, Spaargaren O et al. Prediction of soil fertility properties from a globally distributed soil mid‐infrared spectral library[J]. Soil Science Society of America Journal, 74, 1792-1799(2010).

    [12] Baumann P, Helfenstein A, Gubler A et al. Developing the Swiss soil spectral library for local estimation and monitoring[J]. SOIL Discussions, 1-32(2021).

    [13] Luce M S, Ziadi N, Viscarra Rossel R A. GLOBAL-LOCAL: A new approach for local predictions of soil organic carbon content using large soil spectral libraries[J]. Geoderma, 425, 116048(2022).

    [14] Guerrero C, Zornoza R, Gómez I et al. Spiking of NIR regional models using samples from target sites: Effect of model size on prediction accuracy[J]. Geoderma, 158, 66-77(2010).

    [15] Lobsey C R, Viscarra Rossel R A, Roudier P et al. rs‐local data‐mines information from spectral libraries to improve local calibrations[J]. European Journal of Soil Science, 68, 840-852(2017).

    [16] Liu Y F, Lu Y N, Guo L et al. Construction of calibration set based on the land use types in visible and near-infrared (VIS-NIR) model for soil organic matter estimation[J]. Acta Pedologica Sinica, 53, 332-341(2016).

    [18] Shen Z, Ramirez-Lopez L, Behrens T et al. Deep transfer learning of global spectra for local soil carbon monitoring[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 188, 190-200(2022).

    [19] Chen Y Y, Qi T C, Huang Y J et al. Optimization method of calibration dataset for VIS-NIR spectral inversion model of soil organic matter content[J]. Transactions of the Chinese Society of Agricultural Engineering, 33, 107-114(2017).

    [20] Peng Q Q, Chen S C, Zhou M H et al. Developing of Local Model From Soil Spectral Library with Spectral Dissimilarity[J]. Spectroscopy and Spectral Analysis, 42, 1614-1619(2022).

    [21] Li S, Shi Z, Chen S et al. In situ measurements of organic carbon in soil profiles using vis-NIR spectroscopy on the Qinghai–Tibet plateau[J]. Environmental Science & Technology, 49, 4980-4987(2015).

    [22] Li S, Viscarra Rossel R A, Webster R. The cost‐effectiveness of reflectance spectroscopy for estimating soil organic carbon[J]. European Journal of Soil Science, 73, e13202(2022).

    [23] Ramirez-Lopez L, Behrens T, Schmidt K et al. Distance and similarity-search metrics for use with soil vis–NIR spectra[J]. Geoderma, 199, 43-53(2013).

    [24] Li H D, Li D C, Zeng R. Estimation of soil organic carbon based on spectral similarity matching[J]. Acta Pedologica Sinica, 58, 1224-1233(2021).

    [25] Guerrero C, Wetterlind J, Stenberg B et al. Do we really need large spectral libraries for local scale SOC assessment with NIR spectroscopy?[J]. Soil and Tillage Research, 155, 501-509(2016).

    Tools

    Get Citation

    Copy Citation Text

    Jia-Li SHEN, Song-Chao CHEN, Yong-Sheng HONG, Shuo LI. Novel local calibration optimization from soil mid-infrared spectral library[J]. Journal of Infrared and Millimeter Waves, 2023, 42(6): 815

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Aug. 25, 2022

    Accepted: --

    Published Online: Dec. 26, 2023

    The Author Email: Shuo LI (shuoguoguo@zju.edu.cn)

    DOI:10.11972/j.issn.1001-9014.2023.06.015

    Topics