Opto-Electronic Engineering, Volume. 44, Issue 3, 255(2017)

Principles and applications of metasurfaces with phase modulation

Xiong Li, Xiaoliang Ma, and Xiangang Luo*
Author Affiliations
  • [in Chinese]
  • show less
    References(147)

    [1] [1] Lee S H. Diffractive and miniaturized optics[M]. San Diego, California: Society of Photo Optical, 1994.

    [3] [3] Luo Xiangang. Sub-wavelength electromagnetics[M]. Beijing: Science Press, 2017.

    [4] [4] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77–79.

    [5] [5] Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685): 788–792.

    [6] [6] Guo Yinghui, Pu Mingbo, Ma Xiaoliang, et al. Advances of dispersion-engineered metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 3–22.

    [7] [7] Luo Xiangang, Ishihara T. Surface plasmon resonant inter-ference nanolithography technique[J]. Applied Physics Let-ters, 2004, 84(23): 4780–4782.

    [8] [8] Gao Ping, Yao Na, Wang Changtao, et al. Enhancing aspect profile of half-pitch 32-nm and 22-nm lithography with plas-monic cavity lens[J]. Applied Physics Letters, 2015, 106(9): 093110.

    [9] [9] Luo Xiangang, Ishihara T. Subwavelength photolithography based on surface-plasmon polariton resonance[J]. Optics Express, 2004, 12(14): 3055–3065.

    [10] [10] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780–1782.

    [11] [11] Schurig D, Mock J J, Justice B J, et al. Metamaterial elec-tromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977–980.

    [12] [12] Enoch S, Tayeb G, Sabouroux P, et al. A metamaterial for directive emission[J]. Physical Review Letters, 2002, 89(21): 213902.

    [13] [13] Luo Xiangang, Pu Mingbo, Ma Xiaoliang, et al. Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices[J]. International Journal of Antennas and Propagation, 2015, 2015: 204127.

    [14] [14] Pu Mingbo, Ma Xiaoliang, Li Xiong, et al. Merging plasmonics and metamaterials by two-dimensional subwavelength structures [J]. Journal of Materials Chemistry C, 2017. DOI: 10.1039/c7tc00440k.

    [15] [15] Yu Nanfang, Capasso Federico. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139–150.

    [16] [16] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): 1232009.

    [17] [17] Kock W E. Metallic delay lenses[J]. Bell System Technical Journal, 1948, 27(1): 58–82.

    [18] [18] Berry D, Malech R, Kennedy W. The reflectarray antenna[J]. IEEE Transactions on Antennas and Propagation, 1963, 11(6): 645–651.

    [19] [19] Munk B A. Frequency selective surfaces: theory and de-sign[M]. New York: John Wiley & Sons, 2000.

    [20] [20] Luo Xiangang. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & As-tronomy, 2015, 58(9): 594201.

    [21] [21] Zhao Zeyu, Pu Mingbo, Wang Yanqin, et al. The generalized laws of refraction and reflection[J]. Opto-Electronic Engi-neering, 2017, 44(2): 129–139.

    [22] [22] Luo Xiangang, Xu Ting, Du Chunlei, et al. Metal membrane lens including Nano seam: China, CN200710177752.5[P]. 2008-04-09.

    [23] [23] Xu Ting, Wang Changtao, Du Chunlei, et al. Plasmonic beam deflector[J]. Optics Express, 2008, 16(7): 4753–4759.

    [24] [24] Yu Nanfang, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337.

    [25] [25] Wang Dacheng, Zhang Lingchao, Gu Yinghong, et al. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface[J]. Scientific Reports, 2015, 5: 15020.

    [26] [26] Xu Ting, Du Chunlei, Wang Changtao, et al. Subwavelength imaging by metallic slab lens with nanoslits[J]. Applied Physics Letters, 2007, 91(20): 201501.

    [27] [27] Wang Dacheng, Huang Qin, Qiu Chengwei, et al. Selective excitation of resonances in gammadion metamaterials for terahertz wave manipulation[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(8): 084201.

    [28] [28] West P R, Stewart J L, Kildishev A V, et al. All-dielectric subwavelength metasurface focusing lens[J]. Optics Express, 2014, 22(21): 26212–26221.

    [29] [29] Lalanne Philippe, Astilean Simion, Chavel Pierre, et al. Blazed binary subwavelength gratings with efficiencies larger than those of conventional ′echelette gratings[J]. Optics Letters, 1998, 23(14): 1081–1083.

    [30] [30] Shen Yue, Luo Xiangang. Efficient bending and focusing of light beam with all-dielectric subwavelength structures[J]. Optics Communications, 2016, 366: 174–178.

    [31] [31] Khorasaninejad M, Zhu A Y, Roques-Carmes C, et al. Polar-ization-insensitive metalenses at visible wavelengths[J]. Nano Letters, 2016, 16(11): 7229–7234.

    [32] [32] Li Yang, Li Xiong, Pu Mingbo, et al. Achromatic flat optical components via compensation between structure and mate-rial dispersions[J]. Scientific Reports, 2016, 6: 19885.

    [33] [33] Verslegers L, Catrysse P B, Yu Zongfu, et al. Planar metallic nanoscale slit lenses for angle compensation[J]. Applied Physics Letters, 2009, 95(7): 071112.

    [34] [34] Ishii S, Shalaev V M, Kildishev A V. Holey-metal lenses: sieving single modes with proper phases[J]. Nano Letters, 2013, 13(1): 159–163.

    [35] [35] Lin Ling, Goh X M, McGuinness L P, et al. Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for fresnel-region focusing[J]. Nano Letters, 2010, 10(5): 1936–1940.

    [36] [36] Verslegers L, Catrysse P B, Yu Zongfu, et al. Planar lenses based on nanoscale slit arrays in a metallic film[J]. Nano Letters, 2009, 9(1): 235–238.

    [37] [37] Goh X M, Lin L, Roberts A. Planar focusing elements using spatially varying near-resonant aperture arrays[J]. Optics Express, 2010, 18(11): 11683–11688.

    [38] [38] Xu Ting, Fang Liang, Zeng Beibei, et al. Subwavelength nanolithography based on unidirectional excitation of surface plasmons[J]. Journal of Optics A: Pure and Applied Optics, 2009, 11(8): 085003.

    [39] [39] Xu Ting, Zhao Yanhui, Gan Dachun, et al. Directional exci-tation of surface plasmons with subwavelength slits[J]. Ap-plied Physics Letters, 2008, 92(10): 101501.

    [40] [40] Sun Jingbo, Wang Xi, Xu Tianboyu, et al. Spinning light on the nanoscale[J]. Nano Letters, 2014, 14(5): 2726–2729.

    [41] [41] Xu Ting, Wu Y K, Luo Xiangang, et al. Plasmonic nanoresonators for high-resolution colour filtering and spec-tral imaging[J]. Nature Communications, 2010, 1: 59.

    [42] [42] Gu Yinghong, Zhang Lei, Yang J K W, et al. Color generation via subwavelength plasmonic nanostructures[J]. Nanoscale, 2015, 7(15): 6409–6419.

    [43] [43] Dionne J A, Baldi A, Baum B, et al. Localized fields, global impact: Industrial applications of resonant plasmonic materi-als[J]. MRS Bulletin, 2015, 40(12): 1138–1145.

    [44] [44] Li Xiong, Yang Lanying, Hu Chenggang, et al. Tunable bandwidth of band-stop filter by metamaterial cell coupling in optical frequency[J]. Optics Express, 2011, 19(6): 5283–5289.

    [45] [45] Aieta F, Kats M A, Genevet P, et al. Multiwavelength achro-matic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228): 1342–1345.

    [46] [46] Pu Mingbo, Chen Po, Wang Changtao, et al. Broadband anomalous reflection based on gradient low-Q me-ta-surface[J]. AIP Advances, 2013, 3(5): 052136.

    [47] [47] Pu Mingbo, Chen Po, Wang Yanqin, et al. Anisotropic me-ta-mirror for achromatic electromagnetic polarization manip-ulation[J]. Applied Physics Letters, 2013, 102(13): 131906.

    [48] [48] Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets[J]. Physical Review Letters, 2013, 110(19): 197401.

    [49] [49] Pfeiffer C, Grbic A. Millimeter-wave transmitarrays for wave-front and polarization control[J]. IEEE Transactions on Mi-crowave Theory and Techniques, 2013, 61(12): 4407–4417.

    [50] [50] Pfeiffer C, Emani N K, Shaltout A M, et al. Efficient light bending with isotropic metamaterial Huygens’ surfaces[J]. Nano Letters, 2014, 14(5): 2491–2497.

    [51] [51] Sun Shulin, Yang Kuangyu, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 2012, 12(12): 6223–6229.

    [52] [52] Pors A, Albrektsen O, Radko I P, et al. Gap plasmon-based metasurfaces for total control of reflected light[J]. Scientific Reports, 2013, 3: 2155.

    [53] [53] Pors A, Bozhevolnyi S I. Plasmonic metasurfaces for efficient phase control in reflection[J]. Optics Express, 2013, 21(22): 27438–27451.

    [54] [54] Feng Qin, Pu Mingbo, Hu Chenggang, et al. Engineering the dispersion of metamaterial surface for broadband infrared absorption[J]. Optics Letters, 2012, 37(11): 2133–2135.

    [55] [55] Pu Mingbo, Hu Chenggang, Wang Min, et al. Design princi-ples for infrared wide-angle perfect absorber based on plasmonic structure[J]. Optics Express, 2011, 19(18): 17413–17420.

    [56] [56] Guo Yinghui, Wang Yanqin, Pu Mingbo, et al. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion[J]. Scientific Reports, 2015, 5: 8434.

    [57] [57] Guo Yinghui, Yan Lianshan, Pan Wei, et al. Achromatic polarization manipulation by dispersion management of an-isotropic meta-mirror with dual-metasurface[J]. Optics Express, 2015, 23(21): 27566–27575.

    [58] [58] Sun Shulin, He Qiong, Xiao Shiyi, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426–431.

    [59] [59] Li Xin, Xiao Shiyi, Cai Bengeng, et al. Flat metasurfaces to focus electromagnetic waves in reflection geometry[J]. Optics Letters, 2012, 37(23): 4940–4942.

    [60] [60] Chen Weiting, Yang Kuangyu, Wang C M, et al. High-efficiency broadband meta-hologram with polariza-tion-controlled dual images[J]. Nano Letters, 2014, 14(1): 225–230.

    [61] [61] Yifat Y, Eitan M, Iluz Z, et al. Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna re-flectarrays[J]. Nano Letters, 2014, 14(5): 2485–2490.

    [62] [62] Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anoma-lous refraction[J]. Science, 2013, 340(6138): 1304–1307.

    [63] [63] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A: Mathemat-ical, Physical and Engineering Sciences, 1984, 392(1802): 45–57.

    [64] [64] Sichak W, Levine D J. Microwave high-speed continuous phase shifter[J]. Proceedings of the IRE, 1955, 43(11): 1661–1663.

    [65] [65] Pancharatnam S. Generalized theory of interference, and its applications[J]. Proceedings of the Indian Academy of Sci-ences-Section A, 1956, 44(5): 247–262.

    [66] [66] Pu Mingbo, Li Xiong, Ma Xiaoliang, et al. Catenary optics for achromatic generation of perfect optical angular momen-tum[J]. Science Advances, 2015, 1(9): e1500396.

    [67] [67] Huang Lingling, Chen Xianzhong, Mühlenbernd H, et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 2012, 12(11): 5750–5755.

    [68] [68] Chen Xianzhong, Huang Lingling, Mühlenbernd H, et al. Reversible three-dimensional focusing of visible light with ul-trathin plasmonic flat lens[J]. Advanced Optical Materials, 2013, 1(7): 517–521.

    [69] [69] Chen Xianzhong, Chen Ming, Mehmood M Q, et al. Longi-tudinal multifoci metalens for circularly polarized light[J]. Ad-vanced Optical Materials, 2015, 3(9): 1201–1206.

    [70] [70] Zhao Zeyu, Pu Mingbo, Gao Hui, et al. Multispectral optical metasurfaces enabled by achromatic phase transition[J]. Scientific Reports, 2015, 5: 15781.

    [71] [71] Chen Xianzhong, Huang Lingling, Mühlenbernd H, et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 2012, 3: 1198.

    [72] [72] Huang Lingling, Chen Xianzhong, Bai Benfeng, et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity[J]. Light: Science & Applications, 2013, 2(3): e70.

    [73] [73] Lin Jiao, Mueller J P B, Wang Qian, et al. Polariza-tion-controlled tunable directional coupling of surface plas-mon polaritons[J]. Science, 2013, 340(6130): 331–334.

    [74] [74] Tang Dongliang, Wang Changtao, Zhao Zeyu, et al. Ul-trabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6): 713–719.

    [75] [75] Jin Jinjin, Luo Jun, Zhang Xiaohu, et al. Generation and detection of orbital angular momentum via metasurface[J]. Scientific Reports, 2016, 6: 24286.

    [76] [76] Yang Kunpeng, Pu Mingbo, Li Xiong, et al. Wave-length-selective orbital angular momentum generation based on a plasmonic metasurface[J]. Nanoscale, 2016, 8(24): 12267–12271.

    [77] [77] Ma Xiaoliang, Pu Mingbo, Li Xiong, et al. A planar chiral meta-surface for optical vortex generation and focusing[J]. Scientific Reports, 2015, 5: 10365.

    [78] [78] Brasselet Etienne, Gervinskas Gediminas, Seniutinas Gediminas, et al. Topological Shaping of Light by Closed-Path Nanoslits[J]. Physical Review Letters, 2013, 111(19): 193901.

    [79] [79] Li Yang, Li Xiong, Chen Lianwei, et al. Orbital angular mo-mentum multiplexing and demultiplexing by a single metasurface[J]. Advanced Optical Materials, 2017, 5(2): 1600502. doi: 10.1002/adom.201600502.

    [80] [80] Ren Haoran, Li Xiangping, Zhang Qiming, et al. On-chip noninterference angular momentum multiplexing of broad-band light[J]. Science, 2016, 352(6287): 805–809.

    [81] [81] Li Xiong, Chen Lianwei, Li Yang, et al. Multicolor 3D me-ta-holography by broadband plasmonic modulation[J]. Sci-ence Advances, 2016, 2(11): e1601102.

    [82] [82] Zhang Xiaohu, Jin Jinjin, Pu Mingbo, et al. Ultrahigh-capacity dynamic holographic displays via anisotropic nanoholes[J]. Nanoscale, 2017, 9(4): 1409–1415.

    [83] [83] Huang Lingling, Mühlenbernd Holger, Li Xiaowei, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces[J]. Advanced Materials, 2015, 27(41): 6444–6449.

    [84] [84] Huang Lingling, Chen Xianzhong, Mühlenbernd Holger, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4: 2808.

    [85] [85] Wen Dandan, Yue Fuyong, Li Guixin, et al. Helicity multi-plexed broadband metasurface holograms[J]. Nature Com-munications, 2015, 6: 8241.

    [86] [86] Zhang Xiaohu, Jin Jinjin, Wang Yanqin, et al. Metasurface- based broadband hologram with high tolerance to fabrication errors[J]. Scientific Reports, 2016, 6: 19856.

    [87] [87] Huang Yaowei, Chen Weiting, Tsai W Y, et al. Aluminum plasmonic multicolor meta-hologram[J]. Nano Letters, 2015, 15(5): 3122–3127.

    [88] [88] Montelongo Y, Tenorio-Pearl J O, Williams C, et al. Plasmonic nanoparticle scattering for color holograms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): 12679–12683.

    [89] [89] Ozaki M, Kato J I, Kawata S. Surface-plasmon holography with white-light illumination[J]. Science, 2011, 332(6026): 218–220.

    [90] [90] Luo Xiangang, Pu Mingbo, Li Xiong, et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light: Science & Applications, 2017, 6: e16276.

    [91] [91] Heyman J. Hooke’s cubico-parabolical conoid[J]. Notes and Records of the Royal Society, 1998, 52(1): 39–50.

    [92] [92] Wang Yanqin, Pu Mingbo, Zhang Zuojun, et al. Qua-si-continuous metasurface for ultra-broadband and polariza-tion-controlled electromagnetic beam deflection[J]. Scientific Reports, 2015, 5: 17733.

    [93] [93] Guo Yinghui, Yan Lianshan, Pan Wei, et al. Scattering engineering in continuously shaped metasurface: an ap-proach for electromagnetic illusion[J]. Scientific Reports, 2016, 6: 30154.

    [94] [94] Li Xiong, Pu Mingbo, Wang Yanqin, et al. Dynamic control of the extraordinary optical scattering in semicontinuous 2D metamaterials[J]. Advanced Optical Materials, 2016, 4(5): 659–663.

    [95] [95] Li Xiong, Pu Mingbo, Zhao Zeyu, et al. Catenary nanostructures as compact Bessel beam generators[J]. Scientific Reports, 2016, 6: 20524.

    [96] [96] Sun Hongbo. The mystical interlinks: mechanics, religion or optics [J]. Science China Physics, Mechanics & Astronomy, 2016, 59(1): 614202.

    [97] [97] Hong Minghui. Metasurface wave in planar Nano-photonics[J]. Science Bulletin, 2016, 61(2): 112–113.

    [98] [98] Monticone F, Estakhri N M, Alù A. Full control of nanoscale optical transmission with a composite metascreen[J]. Physical Review Letters, 2013, 110(20): 203903.

    [99] [99] Kang Ming, Feng Tianhua, Wang Huitian, et al. Wave front engineering from an array of thin aperture antennas[J]. Optics Express, 2012, 20(14): 15882–15890.

    [100] [100] Ding Xumin, Monticone F, Zhang Kuang, et al. Ultrathin pancharatnam–berry metasurface with maximal cross-polari-zation efficiency[J]. Advanced Materials, 2015, 27(7): 1195– 1200.

    [101] [101] Pu Mingbo, Zhao Zeyu, Wang Yanqin, et al. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping[J]. Scientific Reports, 2015, 5: 9822.

    [102] [102] Zheng Guoxing, Mühlenbernd H, Kenney M, et al. Metasur-face holograms reaching 80% efficiency[J]. Nature Nano-technology, 2015, 10(4): 308–312.

    [103] [103] Maguid E, Yulevich I, Veksler D, et al. Photonic spin-controlled multifunctional shared-aperture antenna array[J]. Science, 2016, 352(6290): 1202–1206.

    [104] [104] Ni Xingjie, Wong Z J, Mrejen M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310–1314.

    [105] [105] Bomzon Z, Biener G, Kleiner V, et al. Radially and azimuthally polarized beams generated by space-variant dielectric sub-wavelength gratings[J]. Optics Letters, 2002, 27(5): 285–287.

    [106] [106] Bomzon Z, Biener G, Kleiner V, et al. Space-variant Pan-charatnam–berry phase optical elements with comput-er-generated subwavelength gratings[J]. Optics Letters, 2002, 27(13): 1141–1143.

    [107] [107] Levy U, Kim H C, Tsai C H, et al. Near-infrared demonstration of computer-generated holograms implemented by using subwavelength gratings with space-variant orientation[J]. Optics Letters, 2005, 30(16): 2089–2091.

    [108] [108] Khorasaninejad M, Chen Weiting, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190–1194.

    [109] [109] Lin Dianmin, Fan Pengyu, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298–302.

    [110] [110] Hasman E, Kleiner V, Biener G, et al. Polarization dependent focusing lens by use of quantized Pancharatnam–berry phase diffractive optics[J]. Applied Physics Letters, 2003, 82(3): 328–330.

    [111] [111] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwave-length spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11): 937–943.

    [112] [112] Deng Yongbo, Liu Zhenyu, Liu Yongmin, et al. Inverse design of dielectric resonator cloaking based on topology optimiza-tion[J]. Plasmonics, 2016. doi: 10.1007/s11468-016-0438-4.

    [113] [113] Ni Xingjie, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 2012, 335(6067): 427.

    [114] [114] Jiao Jiao, Li Xiong, Huang Xiaoping, et al. Improvement of focusing efficiency of plasmonic planar lens by oil immersion[J]. Plasmonics, 2015, 10(3): 539–545.

    [115] [115] Yin Xiaobo, Ye Ziliang, Rho J, et al. Photonic spin hall effect at metasurfaces[J]. Science, 2013, 339(6126): 1405–1407.

    [116] [116] Lin Jing, Wu Shibin, Li Xiong, et al. Design and numerical analyses of ultrathin plasmonic lens for subwavelength fo-cusing by phase discontinuities of nanoantenna arrays[J]. Applied Physics Express, 2013, 6(2): 022004.

    [117] [117] Genevet P, Yu Nanfang, Aieta F, et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities[J]. Applied Physics Letters, 2012, 100(1): 013101.

    [118] [118] Aieta F, Genevet P, Yu Nanfang, et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities[J]. Nano Letters, 2012, 12(3): 1702–1706.

    [119] [119] Ni Xingjie, Ishii S, Kildishev A V, et al. Ultra-thin, planar, Ba-binet-inverted plasmonic metalenses[J]. Light: Science & Applications, 2013, 2(4): e72.

    [120] [120] Hu Dan, Wang Xinke, Feng Shengfei, et al. Ultrathin terahertz planar elements[J]. Advanced Optical Materials, 2013, 1(2): 186–191.

    [121] [121] Qin Fei, Ding Lu, Zhang Lei, et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light[J]. Science Advances, 2016, 2(1): e1501168.

    [122] [122] Wang Qiu, Zhang Xueqian, Xu Yuehong, et al. A broadband metasurface-based terahertz flat-lens array[J]. Advanced Optical Materials, 2015, 3(6): 779–785.

    [123] [123] Zhang Xueqian, Tian Zhen, Yue Weisheng, et al. Broadband terahertz wave deflection based on C-shape complex met-amaterials with phase discontinuities[J]. Advanced Materials, 2013, 25(33): 4567–4572.

    [124] [124] Mueller J P B, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901.

    [125] [125] Guo Yinghui, Pu Mingbo, Zhao Zeyu, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022–2029.

    [126] [126] Ni Xingjie, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4: 2807.

    [127] [127] Liu Lixiang, Zhang Xueqian, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and am-plitude[J]. Advanced Materials, 2014, 26(29): 5031–5036.

    [128] [128] Jin Jinjin, Pu Mingbo, Wang Yanqin, et al. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial[J]. Advanced Materials Technologies, 2017, 2(2): 1600201.

    [129] [129] Lee J, Tymchenko M, Argyropoulos C, et al. Giant nonlinear response from plasmonic metasurfaces coupled to inter-subband transitions[J]. Nature, 2014, 511(7507): 65–69.

    [130] [130] Almeida E, Shalem G, Prior Y. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces[J]. Nature Communications, 2016, 7: 10367.

    [131] [131] Ye Weimin, Zeuner F, Li Xin, et al. Spin and wavelength multiplexed nonlinear metasurface holography[J]. Nature Communications, 2016, 7: 11930.

    [132] [132] Ma Xiaoliang, Pan Wenbo, Huang Cheng, et al. An active metamaterial for polarization manipulating[J]. Advanced Op-tical Materials, 2014, 2(10): 945–949.

    [133] [133] Luo Jun, Zeng Bo, Wang Changtao, et al. Fabrication of anisotropically arrayed Nano-slots metasurfaces using re-flective plasmonic lithography[J]. Nanoscale, 2015, 7(44): 18805– 18812.

    [134] [134] Luo Xiangang, Yan Lianshan. Surface plasmon polaritons and its applications[J]. IEEE Photonics Journal, 2012, 4(2): 590– 595.

    [135] [135] Lin Dianmin, Tao Hu, Trevino J, et al. Direct transfer of sub-wavelength plasmonic nanostructures on bioactive silk films[J]. Advanced Materials, 2012, 24(45): 6088–6093.

    [136] [136] Khorasaninejad M, Shi Z, Zhu A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819–1824.

    [137] [137] Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Letters, 2016, 16(4): 2818–2823.

    [138] [138] Li Xiong, Feng Qin, Luo Xiangang, et al. Frequency Con-trollable Metamaterial Absorber by an Added Dielectric Lay-er[C]//. AIP conference proceedings, Malaysia, 2011, 1328: 318–320.

    [139] [139] Chen Yiguo, Li Xiong, Luo Xiangang, et al. Tunable near- infrared plasmonic perfect absorber based on phase-change materials[J]. Photonics Research, 2015, 3(3): 54–57.

    [140] [140] Chen Y G, Kao T S, Ng B, et al. Hybrid phase-change plasmonic crystals for active tuning of lattice resonances[J]. Optics Express, 2013, 21(11): 13691–13698.

    [141] [141] Kats M A, Sharma D, Lin Jiao, et al. Ultra-thin perfect absorber employing a tunable phase change material[J]. Applied Physics Letters, 2012, 101(22): 221101.

    [142] [142] Yao Yu, Shankar R, Kats M A, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared op-tical modulators[J]. Nano Letters, 2014, 14(11): 6526–6532.

    [143] [143] Chen H T, Padilla W J, Zide J M O, et al. Active terahertz metamaterial devices[J]. Nature, 2006, 444(7119): 597–600.

    [144] [144] Chen H T, Padilla W J, Cich M J, et al. A metamaterial sol-id-state terahertz phase modulator[J]. Nature Photonics, 2009, 3(3): 148–151.

    [145] [145] Shen Nianhai, Massaouti M, Gokkavas M, et al. Optically implemented broadband blueshift switch in the terahertz re-gime[J]. Physical Review Letters, 2011, 106(3): 037403.

    [146] [146] Large N, Abb M, Aizpurua J, et al. Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches[J]. Nano Letters, 2010, 10(5): 1741–1746.

    [147] [147] Tsakmakidis K L, Wartak M S, Cook J J H, et al. Nega-tive-permeability electromagnetically induced transparent and magnetically active metamaterials[J]. Physical Review B, 2010, 81(19): 195128.

    [148] [148] Temnov V V, Armelles G, Woggon U, et al. Active magne-to-plasmonics in hybrid metal-ferromagnet structures[J]. Na-ture Photonics, 2010, 4(2): 107–111.

    CLP Journals

    [1] CHENG Hong, LI Hong-tao, HAN Yan-jun, SUN Chang-zheng, HAO Zhi-biao, XIONG Bing, WANG Lai, WANG Jian, YU Jia-dong. Near-infrared beam deflector with broadband and large deflection angle based on dielectric metasurface[J]. Optics and Precision Engineering, 2020, 28(9): 1873

    Tools

    Get Citation

    Copy Citation Text

    Xiong Li, Xiaoliang Ma, Xiangang Luo. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 2017, 44(3): 255

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 14, 2016

    Accepted: --

    Published Online: Jun. 6, 2017

    The Author Email: Luo Xiangang (lxg@ioe.ac.cn)

    DOI:10.3969/j.issn.1003-501x.2017.03.001.1

    Topics