Opto-Electronic Engineering, Volume. 44, Issue 3, 255(2017)
Principles and applications of metasurfaces with phase modulation
[1] [1] Lee S H. Diffractive and miniaturized optics[M]. San Diego, California: Society of Photo Optical, 1994.
[3] [3] Luo Xiangang. Sub-wavelength electromagnetics[M]. Beijing: Science Press, 2017.
[4] [4] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77–79.
[5] [5] Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685): 788–792.
[6] [6] Guo Yinghui, Pu Mingbo, Ma Xiaoliang, et al. Advances of dispersion-engineered metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 3–22.
[7] [7] Luo Xiangang, Ishihara T. Surface plasmon resonant inter-ference nanolithography technique[J]. Applied Physics Let-ters, 2004, 84(23): 4780–4782.
[8] [8] Gao Ping, Yao Na, Wang Changtao, et al. Enhancing aspect profile of half-pitch 32-nm and 22-nm lithography with plas-monic cavity lens[J]. Applied Physics Letters, 2015, 106(9): 093110.
[9] [9] Luo Xiangang, Ishihara T. Subwavelength photolithography based on surface-plasmon polariton resonance[J]. Optics Express, 2004, 12(14): 3055–3065.
[10] [10] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780–1782.
[11] [11] Schurig D, Mock J J, Justice B J, et al. Metamaterial elec-tromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977–980.
[12] [12] Enoch S, Tayeb G, Sabouroux P, et al. A metamaterial for directive emission[J]. Physical Review Letters, 2002, 89(21): 213902.
[13] [13] Luo Xiangang, Pu Mingbo, Ma Xiaoliang, et al. Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices[J]. International Journal of Antennas and Propagation, 2015, 2015: 204127.
[14] [14] Pu Mingbo, Ma Xiaoliang, Li Xiong, et al. Merging plasmonics and metamaterials by two-dimensional subwavelength structures [J]. Journal of Materials Chemistry C, 2017. DOI: 10.1039/c7tc00440k.
[15] [15] Yu Nanfang, Capasso Federico. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139–150.
[16] [16] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): 1232009.
[17] [17] Kock W E. Metallic delay lenses[J]. Bell System Technical Journal, 1948, 27(1): 58–82.
[18] [18] Berry D, Malech R, Kennedy W. The reflectarray antenna[J]. IEEE Transactions on Antennas and Propagation, 1963, 11(6): 645–651.
[19] [19] Munk B A. Frequency selective surfaces: theory and de-sign[M]. New York: John Wiley & Sons, 2000.
[20] [20] Luo Xiangang. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & As-tronomy, 2015, 58(9): 594201.
[21] [21] Zhao Zeyu, Pu Mingbo, Wang Yanqin, et al. The generalized laws of refraction and reflection[J]. Opto-Electronic Engi-neering, 2017, 44(2): 129–139.
[22] [22] Luo Xiangang, Xu Ting, Du Chunlei, et al. Metal membrane lens including Nano seam: China, CN200710177752.5[P]. 2008-04-09.
[23] [23] Xu Ting, Wang Changtao, Du Chunlei, et al. Plasmonic beam deflector[J]. Optics Express, 2008, 16(7): 4753–4759.
[24] [24] Yu Nanfang, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337.
[25] [25] Wang Dacheng, Zhang Lingchao, Gu Yinghong, et al. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface[J]. Scientific Reports, 2015, 5: 15020.
[26] [26] Xu Ting, Du Chunlei, Wang Changtao, et al. Subwavelength imaging by metallic slab lens with nanoslits[J]. Applied Physics Letters, 2007, 91(20): 201501.
[27] [27] Wang Dacheng, Huang Qin, Qiu Chengwei, et al. Selective excitation of resonances in gammadion metamaterials for terahertz wave manipulation[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(8): 084201.
[28] [28] West P R, Stewart J L, Kildishev A V, et al. All-dielectric subwavelength metasurface focusing lens[J]. Optics Express, 2014, 22(21): 26212–26221.
[29] [29] Lalanne Philippe, Astilean Simion, Chavel Pierre, et al. Blazed binary subwavelength gratings with efficiencies larger than those of conventional ′echelette gratings[J]. Optics Letters, 1998, 23(14): 1081–1083.
[30] [30] Shen Yue, Luo Xiangang. Efficient bending and focusing of light beam with all-dielectric subwavelength structures[J]. Optics Communications, 2016, 366: 174–178.
[31] [31] Khorasaninejad M, Zhu A Y, Roques-Carmes C, et al. Polar-ization-insensitive metalenses at visible wavelengths[J]. Nano Letters, 2016, 16(11): 7229–7234.
[32] [32] Li Yang, Li Xiong, Pu Mingbo, et al. Achromatic flat optical components via compensation between structure and mate-rial dispersions[J]. Scientific Reports, 2016, 6: 19885.
[33] [33] Verslegers L, Catrysse P B, Yu Zongfu, et al. Planar metallic nanoscale slit lenses for angle compensation[J]. Applied Physics Letters, 2009, 95(7): 071112.
[34] [34] Ishii S, Shalaev V M, Kildishev A V. Holey-metal lenses: sieving single modes with proper phases[J]. Nano Letters, 2013, 13(1): 159–163.
[35] [35] Lin Ling, Goh X M, McGuinness L P, et al. Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for fresnel-region focusing[J]. Nano Letters, 2010, 10(5): 1936–1940.
[36] [36] Verslegers L, Catrysse P B, Yu Zongfu, et al. Planar lenses based on nanoscale slit arrays in a metallic film[J]. Nano Letters, 2009, 9(1): 235–238.
[37] [37] Goh X M, Lin L, Roberts A. Planar focusing elements using spatially varying near-resonant aperture arrays[J]. Optics Express, 2010, 18(11): 11683–11688.
[38] [38] Xu Ting, Fang Liang, Zeng Beibei, et al. Subwavelength nanolithography based on unidirectional excitation of surface plasmons[J]. Journal of Optics A: Pure and Applied Optics, 2009, 11(8): 085003.
[39] [39] Xu Ting, Zhao Yanhui, Gan Dachun, et al. Directional exci-tation of surface plasmons with subwavelength slits[J]. Ap-plied Physics Letters, 2008, 92(10): 101501.
[40] [40] Sun Jingbo, Wang Xi, Xu Tianboyu, et al. Spinning light on the nanoscale[J]. Nano Letters, 2014, 14(5): 2726–2729.
[41] [41] Xu Ting, Wu Y K, Luo Xiangang, et al. Plasmonic nanoresonators for high-resolution colour filtering and spec-tral imaging[J]. Nature Communications, 2010, 1: 59.
[42] [42] Gu Yinghong, Zhang Lei, Yang J K W, et al. Color generation via subwavelength plasmonic nanostructures[J]. Nanoscale, 2015, 7(15): 6409–6419.
[43] [43] Dionne J A, Baldi A, Baum B, et al. Localized fields, global impact: Industrial applications of resonant plasmonic materi-als[J]. MRS Bulletin, 2015, 40(12): 1138–1145.
[44] [44] Li Xiong, Yang Lanying, Hu Chenggang, et al. Tunable bandwidth of band-stop filter by metamaterial cell coupling in optical frequency[J]. Optics Express, 2011, 19(6): 5283–5289.
[45] [45] Aieta F, Kats M A, Genevet P, et al. Multiwavelength achro-matic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228): 1342–1345.
[46] [46] Pu Mingbo, Chen Po, Wang Changtao, et al. Broadband anomalous reflection based on gradient low-Q me-ta-surface[J]. AIP Advances, 2013, 3(5): 052136.
[47] [47] Pu Mingbo, Chen Po, Wang Yanqin, et al. Anisotropic me-ta-mirror for achromatic electromagnetic polarization manip-ulation[J]. Applied Physics Letters, 2013, 102(13): 131906.
[48] [48] Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets[J]. Physical Review Letters, 2013, 110(19): 197401.
[49] [49] Pfeiffer C, Grbic A. Millimeter-wave transmitarrays for wave-front and polarization control[J]. IEEE Transactions on Mi-crowave Theory and Techniques, 2013, 61(12): 4407–4417.
[50] [50] Pfeiffer C, Emani N K, Shaltout A M, et al. Efficient light bending with isotropic metamaterial Huygens’ surfaces[J]. Nano Letters, 2014, 14(5): 2491–2497.
[51] [51] Sun Shulin, Yang Kuangyu, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 2012, 12(12): 6223–6229.
[52] [52] Pors A, Albrektsen O, Radko I P, et al. Gap plasmon-based metasurfaces for total control of reflected light[J]. Scientific Reports, 2013, 3: 2155.
[53] [53] Pors A, Bozhevolnyi S I. Plasmonic metasurfaces for efficient phase control in reflection[J]. Optics Express, 2013, 21(22): 27438–27451.
[54] [54] Feng Qin, Pu Mingbo, Hu Chenggang, et al. Engineering the dispersion of metamaterial surface for broadband infrared absorption[J]. Optics Letters, 2012, 37(11): 2133–2135.
[55] [55] Pu Mingbo, Hu Chenggang, Wang Min, et al. Design princi-ples for infrared wide-angle perfect absorber based on plasmonic structure[J]. Optics Express, 2011, 19(18): 17413–17420.
[56] [56] Guo Yinghui, Wang Yanqin, Pu Mingbo, et al. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion[J]. Scientific Reports, 2015, 5: 8434.
[57] [57] Guo Yinghui, Yan Lianshan, Pan Wei, et al. Achromatic polarization manipulation by dispersion management of an-isotropic meta-mirror with dual-metasurface[J]. Optics Express, 2015, 23(21): 27566–27575.
[58] [58] Sun Shulin, He Qiong, Xiao Shiyi, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426–431.
[59] [59] Li Xin, Xiao Shiyi, Cai Bengeng, et al. Flat metasurfaces to focus electromagnetic waves in reflection geometry[J]. Optics Letters, 2012, 37(23): 4940–4942.
[60] [60] Chen Weiting, Yang Kuangyu, Wang C M, et al. High-efficiency broadband meta-hologram with polariza-tion-controlled dual images[J]. Nano Letters, 2014, 14(1): 225–230.
[61] [61] Yifat Y, Eitan M, Iluz Z, et al. Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna re-flectarrays[J]. Nano Letters, 2014, 14(5): 2485–2490.
[62] [62] Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anoma-lous refraction[J]. Science, 2013, 340(6138): 1304–1307.
[63] [63] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A: Mathemat-ical, Physical and Engineering Sciences, 1984, 392(1802): 45–57.
[64] [64] Sichak W, Levine D J. Microwave high-speed continuous phase shifter[J]. Proceedings of the IRE, 1955, 43(11): 1661–1663.
[65] [65] Pancharatnam S. Generalized theory of interference, and its applications[J]. Proceedings of the Indian Academy of Sci-ences-Section A, 1956, 44(5): 247–262.
[66] [66] Pu Mingbo, Li Xiong, Ma Xiaoliang, et al. Catenary optics for achromatic generation of perfect optical angular momen-tum[J]. Science Advances, 2015, 1(9): e1500396.
[67] [67] Huang Lingling, Chen Xianzhong, Mühlenbernd H, et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 2012, 12(11): 5750–5755.
[68] [68] Chen Xianzhong, Huang Lingling, Mühlenbernd H, et al. Reversible three-dimensional focusing of visible light with ul-trathin plasmonic flat lens[J]. Advanced Optical Materials, 2013, 1(7): 517–521.
[69] [69] Chen Xianzhong, Chen Ming, Mehmood M Q, et al. Longi-tudinal multifoci metalens for circularly polarized light[J]. Ad-vanced Optical Materials, 2015, 3(9): 1201–1206.
[70] [70] Zhao Zeyu, Pu Mingbo, Gao Hui, et al. Multispectral optical metasurfaces enabled by achromatic phase transition[J]. Scientific Reports, 2015, 5: 15781.
[71] [71] Chen Xianzhong, Huang Lingling, Mühlenbernd H, et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 2012, 3: 1198.
[72] [72] Huang Lingling, Chen Xianzhong, Bai Benfeng, et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity[J]. Light: Science & Applications, 2013, 2(3): e70.
[73] [73] Lin Jiao, Mueller J P B, Wang Qian, et al. Polariza-tion-controlled tunable directional coupling of surface plas-mon polaritons[J]. Science, 2013, 340(6130): 331–334.
[74] [74] Tang Dongliang, Wang Changtao, Zhao Zeyu, et al. Ul-trabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6): 713–719.
[75] [75] Jin Jinjin, Luo Jun, Zhang Xiaohu, et al. Generation and detection of orbital angular momentum via metasurface[J]. Scientific Reports, 2016, 6: 24286.
[76] [76] Yang Kunpeng, Pu Mingbo, Li Xiong, et al. Wave-length-selective orbital angular momentum generation based on a plasmonic metasurface[J]. Nanoscale, 2016, 8(24): 12267–12271.
[77] [77] Ma Xiaoliang, Pu Mingbo, Li Xiong, et al. A planar chiral meta-surface for optical vortex generation and focusing[J]. Scientific Reports, 2015, 5: 10365.
[78] [78] Brasselet Etienne, Gervinskas Gediminas, Seniutinas Gediminas, et al. Topological Shaping of Light by Closed-Path Nanoslits[J]. Physical Review Letters, 2013, 111(19): 193901.
[79] [79] Li Yang, Li Xiong, Chen Lianwei, et al. Orbital angular mo-mentum multiplexing and demultiplexing by a single metasurface[J]. Advanced Optical Materials, 2017, 5(2): 1600502. doi: 10.1002/adom.201600502.
[80] [80] Ren Haoran, Li Xiangping, Zhang Qiming, et al. On-chip noninterference angular momentum multiplexing of broad-band light[J]. Science, 2016, 352(6287): 805–809.
[81] [81] Li Xiong, Chen Lianwei, Li Yang, et al. Multicolor 3D me-ta-holography by broadband plasmonic modulation[J]. Sci-ence Advances, 2016, 2(11): e1601102.
[82] [82] Zhang Xiaohu, Jin Jinjin, Pu Mingbo, et al. Ultrahigh-capacity dynamic holographic displays via anisotropic nanoholes[J]. Nanoscale, 2017, 9(4): 1409–1415.
[83] [83] Huang Lingling, Mühlenbernd Holger, Li Xiaowei, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces[J]. Advanced Materials, 2015, 27(41): 6444–6449.
[84] [84] Huang Lingling, Chen Xianzhong, Mühlenbernd Holger, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4: 2808.
[85] [85] Wen Dandan, Yue Fuyong, Li Guixin, et al. Helicity multi-plexed broadband metasurface holograms[J]. Nature Com-munications, 2015, 6: 8241.
[86] [86] Zhang Xiaohu, Jin Jinjin, Wang Yanqin, et al. Metasurface- based broadband hologram with high tolerance to fabrication errors[J]. Scientific Reports, 2016, 6: 19856.
[87] [87] Huang Yaowei, Chen Weiting, Tsai W Y, et al. Aluminum plasmonic multicolor meta-hologram[J]. Nano Letters, 2015, 15(5): 3122–3127.
[88] [88] Montelongo Y, Tenorio-Pearl J O, Williams C, et al. Plasmonic nanoparticle scattering for color holograms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): 12679–12683.
[89] [89] Ozaki M, Kato J I, Kawata S. Surface-plasmon holography with white-light illumination[J]. Science, 2011, 332(6026): 218–220.
[90] [90] Luo Xiangang, Pu Mingbo, Li Xiong, et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light: Science & Applications, 2017, 6: e16276.
[91] [91] Heyman J. Hooke’s cubico-parabolical conoid[J]. Notes and Records of the Royal Society, 1998, 52(1): 39–50.
[92] [92] Wang Yanqin, Pu Mingbo, Zhang Zuojun, et al. Qua-si-continuous metasurface for ultra-broadband and polariza-tion-controlled electromagnetic beam deflection[J]. Scientific Reports, 2015, 5: 17733.
[93] [93] Guo Yinghui, Yan Lianshan, Pan Wei, et al. Scattering engineering in continuously shaped metasurface: an ap-proach for electromagnetic illusion[J]. Scientific Reports, 2016, 6: 30154.
[94] [94] Li Xiong, Pu Mingbo, Wang Yanqin, et al. Dynamic control of the extraordinary optical scattering in semicontinuous 2D metamaterials[J]. Advanced Optical Materials, 2016, 4(5): 659–663.
[95] [95] Li Xiong, Pu Mingbo, Zhao Zeyu, et al. Catenary nanostructures as compact Bessel beam generators[J]. Scientific Reports, 2016, 6: 20524.
[96] [96] Sun Hongbo. The mystical interlinks: mechanics, religion or optics [J]. Science China Physics, Mechanics & Astronomy, 2016, 59(1): 614202.
[97] [97] Hong Minghui. Metasurface wave in planar Nano-photonics[J]. Science Bulletin, 2016, 61(2): 112–113.
[98] [98] Monticone F, Estakhri N M, Alù A. Full control of nanoscale optical transmission with a composite metascreen[J]. Physical Review Letters, 2013, 110(20): 203903.
[99] [99] Kang Ming, Feng Tianhua, Wang Huitian, et al. Wave front engineering from an array of thin aperture antennas[J]. Optics Express, 2012, 20(14): 15882–15890.
[100] [100] Ding Xumin, Monticone F, Zhang Kuang, et al. Ultrathin pancharatnam–berry metasurface with maximal cross-polari-zation efficiency[J]. Advanced Materials, 2015, 27(7): 1195– 1200.
[101] [101] Pu Mingbo, Zhao Zeyu, Wang Yanqin, et al. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping[J]. Scientific Reports, 2015, 5: 9822.
[102] [102] Zheng Guoxing, Mühlenbernd H, Kenney M, et al. Metasur-face holograms reaching 80% efficiency[J]. Nature Nano-technology, 2015, 10(4): 308–312.
[103] [103] Maguid E, Yulevich I, Veksler D, et al. Photonic spin-controlled multifunctional shared-aperture antenna array[J]. Science, 2016, 352(6290): 1202–1206.
[104] [104] Ni Xingjie, Wong Z J, Mrejen M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310–1314.
[105] [105] Bomzon Z, Biener G, Kleiner V, et al. Radially and azimuthally polarized beams generated by space-variant dielectric sub-wavelength gratings[J]. Optics Letters, 2002, 27(5): 285–287.
[106] [106] Bomzon Z, Biener G, Kleiner V, et al. Space-variant Pan-charatnam–berry phase optical elements with comput-er-generated subwavelength gratings[J]. Optics Letters, 2002, 27(13): 1141–1143.
[107] [107] Levy U, Kim H C, Tsai C H, et al. Near-infrared demonstration of computer-generated holograms implemented by using subwavelength gratings with space-variant orientation[J]. Optics Letters, 2005, 30(16): 2089–2091.
[108] [108] Khorasaninejad M, Chen Weiting, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190–1194.
[109] [109] Lin Dianmin, Fan Pengyu, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298–302.
[110] [110] Hasman E, Kleiner V, Biener G, et al. Polarization dependent focusing lens by use of quantized Pancharatnam–berry phase diffractive optics[J]. Applied Physics Letters, 2003, 82(3): 328–330.
[111] [111] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwave-length spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11): 937–943.
[112] [112] Deng Yongbo, Liu Zhenyu, Liu Yongmin, et al. Inverse design of dielectric resonator cloaking based on topology optimiza-tion[J]. Plasmonics, 2016. doi: 10.1007/s11468-016-0438-4.
[113] [113] Ni Xingjie, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 2012, 335(6067): 427.
[114] [114] Jiao Jiao, Li Xiong, Huang Xiaoping, et al. Improvement of focusing efficiency of plasmonic planar lens by oil immersion[J]. Plasmonics, 2015, 10(3): 539–545.
[115] [115] Yin Xiaobo, Ye Ziliang, Rho J, et al. Photonic spin hall effect at metasurfaces[J]. Science, 2013, 339(6126): 1405–1407.
[116] [116] Lin Jing, Wu Shibin, Li Xiong, et al. Design and numerical analyses of ultrathin plasmonic lens for subwavelength fo-cusing by phase discontinuities of nanoantenna arrays[J]. Applied Physics Express, 2013, 6(2): 022004.
[117] [117] Genevet P, Yu Nanfang, Aieta F, et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities[J]. Applied Physics Letters, 2012, 100(1): 013101.
[118] [118] Aieta F, Genevet P, Yu Nanfang, et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities[J]. Nano Letters, 2012, 12(3): 1702–1706.
[119] [119] Ni Xingjie, Ishii S, Kildishev A V, et al. Ultra-thin, planar, Ba-binet-inverted plasmonic metalenses[J]. Light: Science & Applications, 2013, 2(4): e72.
[120] [120] Hu Dan, Wang Xinke, Feng Shengfei, et al. Ultrathin terahertz planar elements[J]. Advanced Optical Materials, 2013, 1(2): 186–191.
[121] [121] Qin Fei, Ding Lu, Zhang Lei, et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light[J]. Science Advances, 2016, 2(1): e1501168.
[122] [122] Wang Qiu, Zhang Xueqian, Xu Yuehong, et al. A broadband metasurface-based terahertz flat-lens array[J]. Advanced Optical Materials, 2015, 3(6): 779–785.
[123] [123] Zhang Xueqian, Tian Zhen, Yue Weisheng, et al. Broadband terahertz wave deflection based on C-shape complex met-amaterials with phase discontinuities[J]. Advanced Materials, 2013, 25(33): 4567–4572.
[124] [124] Mueller J P B, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901.
[125] [125] Guo Yinghui, Pu Mingbo, Zhao Zeyu, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022–2029.
[126] [126] Ni Xingjie, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4: 2807.
[127] [127] Liu Lixiang, Zhang Xueqian, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and am-plitude[J]. Advanced Materials, 2014, 26(29): 5031–5036.
[128] [128] Jin Jinjin, Pu Mingbo, Wang Yanqin, et al. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial[J]. Advanced Materials Technologies, 2017, 2(2): 1600201.
[129] [129] Lee J, Tymchenko M, Argyropoulos C, et al. Giant nonlinear response from plasmonic metasurfaces coupled to inter-subband transitions[J]. Nature, 2014, 511(7507): 65–69.
[130] [130] Almeida E, Shalem G, Prior Y. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces[J]. Nature Communications, 2016, 7: 10367.
[131] [131] Ye Weimin, Zeuner F, Li Xin, et al. Spin and wavelength multiplexed nonlinear metasurface holography[J]. Nature Communications, 2016, 7: 11930.
[132] [132] Ma Xiaoliang, Pan Wenbo, Huang Cheng, et al. An active metamaterial for polarization manipulating[J]. Advanced Op-tical Materials, 2014, 2(10): 945–949.
[133] [133] Luo Jun, Zeng Bo, Wang Changtao, et al. Fabrication of anisotropically arrayed Nano-slots metasurfaces using re-flective plasmonic lithography[J]. Nanoscale, 2015, 7(44): 18805– 18812.
[134] [134] Luo Xiangang, Yan Lianshan. Surface plasmon polaritons and its applications[J]. IEEE Photonics Journal, 2012, 4(2): 590– 595.
[135] [135] Lin Dianmin, Tao Hu, Trevino J, et al. Direct transfer of sub-wavelength plasmonic nanostructures on bioactive silk films[J]. Advanced Materials, 2012, 24(45): 6088–6093.
[136] [136] Khorasaninejad M, Shi Z, Zhu A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819–1824.
[137] [137] Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Letters, 2016, 16(4): 2818–2823.
[138] [138] Li Xiong, Feng Qin, Luo Xiangang, et al. Frequency Con-trollable Metamaterial Absorber by an Added Dielectric Lay-er[C]//. AIP conference proceedings, Malaysia, 2011, 1328: 318–320.
[139] [139] Chen Yiguo, Li Xiong, Luo Xiangang, et al. Tunable near- infrared plasmonic perfect absorber based on phase-change materials[J]. Photonics Research, 2015, 3(3): 54–57.
[140] [140] Chen Y G, Kao T S, Ng B, et al. Hybrid phase-change plasmonic crystals for active tuning of lattice resonances[J]. Optics Express, 2013, 21(11): 13691–13698.
[141] [141] Kats M A, Sharma D, Lin Jiao, et al. Ultra-thin perfect absorber employing a tunable phase change material[J]. Applied Physics Letters, 2012, 101(22): 221101.
[142] [142] Yao Yu, Shankar R, Kats M A, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared op-tical modulators[J]. Nano Letters, 2014, 14(11): 6526–6532.
[143] [143] Chen H T, Padilla W J, Zide J M O, et al. Active terahertz metamaterial devices[J]. Nature, 2006, 444(7119): 597–600.
[144] [144] Chen H T, Padilla W J, Cich M J, et al. A metamaterial sol-id-state terahertz phase modulator[J]. Nature Photonics, 2009, 3(3): 148–151.
[145] [145] Shen Nianhai, Massaouti M, Gokkavas M, et al. Optically implemented broadband blueshift switch in the terahertz re-gime[J]. Physical Review Letters, 2011, 106(3): 037403.
[146] [146] Large N, Abb M, Aizpurua J, et al. Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches[J]. Nano Letters, 2010, 10(5): 1741–1746.
[147] [147] Tsakmakidis K L, Wartak M S, Cook J J H, et al. Nega-tive-permeability electromagnetically induced transparent and magnetically active metamaterials[J]. Physical Review B, 2010, 81(19): 195128.
[148] [148] Temnov V V, Armelles G, Woggon U, et al. Active magne-to-plasmonics in hybrid metal-ferromagnet structures[J]. Na-ture Photonics, 2010, 4(2): 107–111.
Get Citation
Copy Citation Text
Xiong Li, Xiaoliang Ma, Xiangang Luo. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 2017, 44(3): 255
Category:
Received: Dec. 14, 2016
Accepted: --
Published Online: Jun. 6, 2017
The Author Email: Luo Xiangang (lxg@ioe.ac.cn)