Bulletin of the Chinese Ceramic Society, Volume. 44, Issue 5, 1899(2025)
Preparation and Magnetic Performance of Magnetic Fe3O4 Nanoparticles by Facile Hydrothermal Method
[1] [1] MOUSTAFA M G, HAMDEH H H, SEBAK M A, et al. Mssbauer spectral analysis and magnetic properties of the superparamagnetic Mn0.5Zn0.5Fe2O4 ferrite nanocomposites[J]. Materials Today Communications, 2023, 37: 107090.
[2] [2] PUSIOL E F, SAAVEDRA E, PEREIRA A, et al. Dynamic susceptibility of Fe3O4 nanotubes[J]. Discover Nano, 2023, 18(1): 61.
[3] [3] SU J, LI G, BAI H, et al. Large perpendicular magnetic anisotropy and tunneling magnetoresistance in thermally stable Mo/FeNiB/MgO magnetic tunnel junctions[J]. Journal of Physics D: Applied Physics, 2020, 53(12): 125003.
[4] [4] SHAHU C K, DUBEY S, DWIVEDI S. Domain wall motion in multiferroic nanostructures under the influence of spin-orbit torque and nonlinear dissipative effect[J]. Mechanics of Advanced Materials and Structures, 2023, 30(24): 5047-5057.
[5] [5] LIU K Y, FENG W, LI Y R, et al. Reuseable Fe3O4@PEI-DTC-Au@Ag magnetic nanocomposites: a versatile and sensitive SERS substrate for food safety assessment[J]. Journal of Alloys and Compounds, 2024, 1002: 175433.
[6] [6] BRADLEY D. Magnetic memories[J]. Materials Today, 2018, 21(4): 324-325.
[7] [7] MI M J, XIAO H, YU L X, et al. Two-dimensional magnetic materials for spintronic devices[J]. Materials Today Nano, 2023, 24: 100408.
[8] [8] OLIVEIRA-FILHO G B, ATOCHE-MEDRANO J J, ARAGN F F H, et al. Core-shell Au/Fe3O4 nanocomposite synthesized by thermal decomposition method: structural, optical, and magnetic properties[J]. Applied Surface Science, 2021, 563: 150290.
[9] [9] MORN D, GUTIRREZ G, MENDOZA R, et al. Synthesis of controlled-size starch nanoparticles and superparamagnetic starch nanocomposites by microemulsion method[J]. Carbohydrate Polymers, 2023, 299: 120223.
[10] [10] PU S Y, XUE S Y, YANG Z, et al. In situ co-precipitation preparation of a superparamagnetic graphene oxide/Fe3O4 nanocomposite as an adsorbent for wastewater purification: synthesis, characterization, kinetics, and isotherm studies[J]. Environmental Science and Pollution Research International, 2018, 25(18): 17310-17320.
[11] [11] OH A H, PARK H Y, JUNG Y G, et al. Synthesis of Fe3O4 nanoparticles of various size via the polyol method[J]. Ceramics International, 2020, 46(8): 10723-10728.
[12] [12] XU S C, WANG Z H, SU R, et al. Structure and magnetic properties of multi-morphological CoFe2O4/CoFe nanocomposites by one-step hydrothermal synthesis[J]. Ceramics International, 2018, 44(8): 9377-9383.
[13] [13] JIANG H N, ZHANG P, WANG X G, et al. Synthesis of magnetic two-dimensional materials by chemical vapor deposition[J]. Nano Research, 2021, 14(6): 1789-1801.
[14] [14] BETANCOURT-CANTERA J A, SNCHEZ-DE JESS F, BOLARN-MIR A M, et al. Magnetic properties and crystal structure of elemental cobalt powder modified by high-energy ball milling[J]. Journal of Materials Research and Technology, 2019, 8(5): 4995-5003.
[15] [15] LIU S X, YU B, WANG S, et al. Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles[J]. Advances in Colloid and Interface Science, 2020, 281: 102165.
[16] [16] YEW Y P, SHAMELI K, MIYAKE M, et al. Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: a review[J]. Arabian Journal of Chemistry, 2020, 13(1): 2287-2308.
[17] [17] ANGELAKERIS M. Magnetic nanoparticles: a multifunctional vehicle for modern theranostics[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2017, 1861(6): 1642-1651.
[18] [18] FATMAWATI T, SHIDDIQ M, ARMYNAH B, et al. Synthesis methods of Fe3O4 nanoparticles for biomedical applications[J]. Chemical Engineering & Technology, 2023, 46(11): 2356-2366.
[19] [19] LIU M Y, YE Y Y, YE J M, et al. Recent advances of magnetite (Fe3O4)-based magnetic materials in catalytic applications[J]. Magnetochemistry, 2023, 9(4): 110.
[20] [20] SMITH P F, KLINE H, TAKEUCHI E S, et al. Application of a multiscale, molecular- to meso-scale perspective towards the investigation of Fe3O4 as an energy storage material[J]. ECS Transactions, 2017, 77(11): 249-255.
[21] [21] HE W X, ZHUANG Y J, CHEN Y J, et al. Thermo-magnetic convection regulating the solidification behavior and energy storage of Fe3O4 nanoparticles composited paraffin wax under the magnetic-field[J]. Applied Thermal Engineering, 2022, 214: 118617.
[22] [22] ZHANG F F, YANG Z H, YIN T H, et al. Simple and facile synthesis of magnetic nanosheets by improved precipitation method[J]. Journal of Alloys and Compounds, 2022, 922: 166305.
[23] [23] KANG J C, HU C S, LIU X Q, et al. One-pot synthesis of magnetic nanocellulose/Fe3O4 hybrids using FeCl3 as cellulose hydrolytic medium and Fe3O4 precursor[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(15): 5917-5926.
[24] [24] YU X G, SHAN Y, DU B, et al. One-pot and template-free fabrication of dendritic and octahedral single-crystal magnetites[J]. CrystEngComm, 2011, 13(5): 1525-1530.
[25] [25] LI X Y, SI Z J, LEI Y Q, et al. Direct hydrothermal synthesis of single-crystalline triangular Fe3O4 nanoprisms[J]. Cryst Eng Comm, 2010, 12(7): 2060.
[26] [26] XU Y, ZHANG Y, SONG X L, et al. Facile hydrothermal synthesis of Fe3O4 nanoparticle and effect of crystallinity on performances for supercapacitor[J]. Functional Materials Letters, 2019, 12(2): 1950019.
[27] [27] ZHU J, NAN Z D. Zn-doped Fe3O4 nanosheet formation induced by EDA with high magnetization and an investigation of the formation mechanism[J]. The Journal of Physical Chemistry C, 2017, 121(17): 9612-9620.
[28] [28] SANI S, ADNAN R, OH W D, et al. Comparison of the surface properties of hydrothermally synthesised Fe3O4@C nanocomposites at variable reaction times[J]. Nanomaterials, 2021, 11(10): 2742.
[29] [29] MIZUTANI N, IWASAKI T, WATANO S, et al. Effect of ferrous/ferric ions molar ratio on reaction mechanism for hydrothermal synthesis of magnetite nanoparticles[J]. Bulletin of Materials Science, 2008, 31(5): 713-717.
[30] [30] ALIBEIGI S, VAEZI M R. Phase transformation of iron oxide nanoparticles by varying the molar ratio of Fe2+∶Fe3+[J]. Chemical Engineering & Technology, 2008, 31(11): 1591-1596.
[33] [33] IDCZAK K, IDCZAK R, KONIECZNY R. An investigation of the corrosion of polycrystalline iron by XPS, TMS and CEMS[J]. Physica B: Condensed Matter, 2016, 491: 37-45.
[34] [34] YADAV B S, VISHWAKARMA A K, SINGH A K, et al. Oxygen vacancies induced ferromagnetism in RF-sputtered and hydrothermally annealed zinc ferrite (ZnFe2O4) thin films[J]. Vacuum, 2023, 207: 111617.
[35] [35] POULIN S, FRANA R, MOREAU-BLANGER L, et al. Confirmation of X-ray photoelectron spectroscopy peak attributions of nanoparticulate iron oxides, using symmetric peak component line shapes[J]. Journal of Physical Chemistry C, 2010(24): 10711-10718.
[36] [36] YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Applied Surface Science, 2008, 254(8): 2441-2449.
[37] [37] GE S, SHI X Y, SUN K, et al. A facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties[J]. The Journal of Physical Chemistry C, Nanomaterials and Interfaces, 2009, 113(31): 13593-13599.
[38] [38] SRINIVAS C, TIRUPANYAM B V, SATISH A, et al. Effect of Ni2+ substitution on structural and magnetic properties of Ni-Zn ferrite nanoparticles[J]. Journal of Magnetism and Magnetic Materials, 2015, 382: 15-19.
[39] [39] LEE J S, CHA J M, YOON H Y, et al. Magnetic multi-granule nanoclusters: a model system that exhibits universal size effect of magnetic coercivity[J]. Scientific Reports, 2015, 5: 12135.
[40] [40] LESLIE-PELECKY D L, RIEKE R D. Magnetic properties of nanostructured materials[J]. Chemistry of Materials, 1996, 8(8): 1770-1783.
[42] [42] BAGHERZADEH E, HOSSEINI H R M, KHAKZADIAN J. Synthesis of magnetic mesoporous nanocomposites: a promising candidate for diagnostic and therapeutic biomedical applications[J]. Materials Chemistry and Physics, 2015, 167: 201-208.
[43] [43] HAW C Y, MOHAMED F, CHIA C H, et al. Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents[J]. Ceramics International, 2010, 36(4): 1417-1422.
[44] [44] NANDWANA V, DRAVID V P. Multicomponent magnetic spinels: from complexity of crystal chemistry to coupled magnetic resonance imaging (MRI)[J]. APL Materials, 2023, 11(5): 050701.
[45] [45] VENKATESHVARAN D, ALTHAMMER M, NIELSEN A, et al. Epitaxial ZnxFe3-xO4 thin films: a spintronic material with tunable electrical and magnetic properties[J]. Physical Review B, 2009, 79(13): 134405.
[46] [46] REHMAN S U, AHMED R, LIU J, et al. Decrease in the particle size and coercivity of self-assembled CoNi nanoparticles synthesized under a repulsive magnetic field[J]. Particle & Particle Systems Characterization, 2019, 36(6): 1900047.
[47] [47] JACINTHO G V M, BROLO A G, CORIO P, et al. Structural investigation of MFe2O4 (M = Fe, Co) magnetic fluids[J]. The Journal of Physical Chemistry C, 2009, 113(18): 7684-7691.
Get Citation
Copy Citation Text
DING Jiexiong, LIU Xin, TIE Shengnian, TIE Jian, JIANG Zipeng, WANG Yahui, WANG Peiyi, WANG Qinghai. Preparation and Magnetic Performance of Magnetic Fe3O4 Nanoparticles by Facile Hydrothermal Method[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(5): 1899
Category:
Received: Oct. 10, 2024
Accepted: Jun. 12, 2025
Published Online: Jun. 12, 2025
The Author Email: TIE Shengnian (tieshengnian@163.com)