Chinese Journal of Lasers, Volume. 50, Issue 19, 1913001(2023)

Dynamically Tunable Infrared Ultra-wideband Absorber Based on Vanadium Dioxide

Yuting Chen1, Wenrui Xue1、*, Jing Zhang1, Haotian Fan1, and Changyong Li2,3
Author Affiliations
  • 1College of Physics and Electronic Engineering, Shanxi University,Taiyuan 030006, Shanxi, China
  • 2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, Shanxi, China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi, China
  • show less
    References(40)

    [1] Han S, Shin J H, Jung P H et al. Broadband solar thermal absorber based on optical metamaterials for high-temperature applications[J]. Advanced Optical Materials, 4, 1265-1273(2016).

    [2] Cai H Y, Sun Y, Wang X P et al. Design of an ultra-broadband near-perfect bilayer grating metamaterial absorber based on genetic algorithm[J]. Optics Express, 28, 15347-15359(2020).

    [3] Li K, Guo Y H, Pu M B et al. Dispersion controlling meta-lens at visible frequency[J]. Optics Express, 25, 21419-21427(2017).

    [4] Tao H, Landy N I, Bingham C M et al. A metamaterial absorber for the terahertz regime: design, fabrication and characterization[J]. Optics Express, 16, 7181-7188(2008).

    [5] Cui Y X, Fung K H, Xu J et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 12, 1443-1447(2012).

    [6] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [7] Komar A, Paniagua-Domínguez R, Miroshnichenko A et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces[J]. ACS Photonics, 5, 1742-1748(2018).

    [8] Komar A, Fang Z, Bohn J et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals[J]. Applied Physics Letters, 110, 071109(2017).

    [9] Abdollahramezani S, Hemmatyar O, Taghinejad H et al. Tunable nanophotonics enabled by chalcogenide phase-change materials[J]. Nanophotonics, 9, 1189-1241(2020).

    [10] Shi C, Luxmoore I J, Nash G R. Gate tunable graphene-integrated metasurface modulator for mid-infrared beam steering[J]. Optics Express, 27, 14577-14584(2019).

    [11] Kim Y, Wu P C, Sokhoyan R et al. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces[J]. Nano Letters, 19, 3961-3968(2019).

    [12] Chu Q Q, Song Z Y, Liu Q H. Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces[J]. Applied Physics Express, 11, 082203(2018).

    [13] Jeong Y G, Han S, Rhie J et al. A vanadium dioxide metamaterial disengaged from insulator-to-metal transition[J]. Nano Letters, 15, 6318-6323(2015).

    [14] Knight M W, Sobhani H, Nordlander P et al. Photodetection with active optical antennas[J]. Science, 332, 702-704(2011).

    [15] Stewart J W, Vella J H, Li W et al. Ultrafast pyroelectric photodetection with on-chip spectral filters[J]. Nature Materials, 19, 158-162(2020).

    [16] Leitis A, Heßler A, Wahl S et al. All-dielectric programmable Huygens’ metasurfaces[J]. Advanced Functional Materials, 30, 1910259(2020).

    [17] Lou J, Liang J G, Yu Y et al. Silicon-based terahertz meta-devices for electrical modulation of Fano resonance and transmission amplitude[J]. Advanced Optical Materials, 8, 2000449(2020).

    [18] Luo S W, Zhao J, Zuo D L et al. Perfect narrow band absorber for sensing applications[J]. Optics Express, 24, 9288-9294(2016).

    [19] Komar A, Paniagua-Domínguez R, Miroshnichenko A et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces[J]. ACS Photonics, 5, 1742-1748(2018).

    [20] Wang H, Yang Y, Wang L P. Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer[J]. Applied Physics Letters, 105, 071907(2014).

    [21] Liang J R, Song X L, Li J P et al. A visible-near infrared wavelength-tunable metamaterial absorber based on the structure of Au triangle arrays embedded in VO2 thin film[J]. Journal of Alloys and Compounds, 708, 999-1007(2017).

    [22] Li Z P, Li Y, Huang Y Q et al. Tunable mid-infrared broadband absorber based on W/VO2 square nano-pillar array[J]. Acta Optical Sinca, 48, 0316001(2019).

    [23] Zhao W Q, Li Y, Tian R et al. A dynamically temperature tunable broadband infrared absorber with cross square nanocolumn arrays[J]. Optics Communications, 474, 126096(2020).

    [24] Chen J, Tang F, Wang X X et al. High efficiency broadband near-infrared absorbers based on tunable SiO2-VO2-MoS2 multilayer metamaterials[J]. Results in Physics, 26, 104404(2021).

    [25] Sun Y H, Wang Y, Ye H et al. Switchable bifunctional metasurface based on VO2 for ultra-broadband polarization conversion and perfect absorption in same infrared waveband[J]. Optics Communications, 503, 127442(2022).

    [26] Liu N, Langguth L, Weiss T et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit[J]. Nature Materials, 8, 758-762(2009).

    [27] Mosaddeq-Ur-Rahman M, Yu G L, Krishna K M et al. Determination of optical constants of solgel-derived inhomogeneous TiO2 thin films by spectroscopic ellipsometry and transmission spectroscopy[J]. Applied Optics, 37, 691-697(1998).

    [28] Chen X, Xue W R, Zhao C et al. Ultra-broadband infrared absorber based on LiF and NaF[J]. Acta Optica Sinica, 38, 0123002(2018).

    [29] Song Z Y, Zhang J H. Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same terahertz frequencies[J]. Optics Express, 28, 12487-12497(2020).

    [30] Fan F, Hou Y, Jiang Z W et al. Terahertz modulator based on insulator-metal transition in photonic crystal waveguide[J]. Applied Optics, 51, 4589-4596(2012).

    [31] Wang Q Z, Liu S Y, Ren G J et al. Multi-parameter tunable terahertz absorber based on graphene and vanadium dioxide[J]. Optics Communications, 494, 127050(2021).

    [32] Gao H X, Peng W, Chu S W et al. Refractory ultra-broadband perfect absorber from visible to near-infrared[J]. Nanomaterials, 8, 1038(2018).

    [33] Ma W Y, Yu S L, Zhao T G. Numerical study of an ultra-broadband perfect absorber from ultraviolet to near-infrared based on metal quadruple staircase structure[J]. Optics Communications, 493, 127037(2021).

    [34] Liu K, Liu Y Y, Deng F et al. Long-wave infrared ultra-broadband perfect absorber with embedded structure[J]. Acta Optica Sinica, 41, 2423002(2021).

    [35] Liang Y, Liu X F, Xin J et al. Ultra-broadband long-wave infrared metasurface absorber based on Peano fractal curve[J]. Results in Physics, 33, 105169(2022).

    [36] Mayer A A, Bi H, Griesse-Nascimento S et al. Genetic-algorithm-aided ultra-broadband perfect absorbers using plasmonic metamaterials[J]. Optics Express, 30, 1167-1181(2022).

    [37] Wang R, Yue S, Zhang Z et al. Broadband perfect absorber in the visible range based on metasurface composite structures[J]. Materials, 15, 2612(2022).

    [38] Chen C, Liu Y H, Jiang Z Y et al. Large-area long-wave infrared broadband all-dielectric metasurface absorber based on markless laser direct writing lithography[J]. Optics Express, 30, 13391-13403(2022).

    [39] Zhang H S, Wu K D. Ultra-broadband near-perfect absorber based on single-layer Ge-assisted metasurface[J]. Journal of the Optical Society of America B, 39, 332-337(2021).

    [40] Long L S, Taylor S, Ying X Y et al. Thermally-switchable spectrally-selective infrared metamaterial absorber/emitter by tuning magnetic polariton with a phase-change VO2 layer[J]. Materials Today Energy, 13, 214-220(2019).

    Tools

    Get Citation

    Copy Citation Text

    Yuting Chen, Wenrui Xue, Jing Zhang, Haotian Fan, Changyong Li. Dynamically Tunable Infrared Ultra-wideband Absorber Based on Vanadium Dioxide[J]. Chinese Journal of Lasers, 2023, 50(19): 1913001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: micro and nano optics

    Received: Aug. 8, 2022

    Accepted: Sep. 28, 2022

    Published Online: Sep. 25, 2023

    The Author Email: Xue Wenrui (wrxue@sxu.edu.cn)

    DOI:10.3788/CJL221119

    Topics