Laser & Optoelectronics Progress, Volume. 62, Issue 16, 1637005(2025)

Dynamic Contrast Dual-Branch Feature Decomposition Network for Infrared-Visible Image Fusion

Linglin Bao1, Pengge Ma1,2,3、*, Long Wang1, Jinwang Qian1, Zhaoyu Liu2,3, and Qiuchun Jin1
Author Affiliations
  • 1School of Electronics and Information, Zhengzhou University of Aeronautics, Zhengzhou 450046, Henan , China
  • 2Henan Province Key Laboratory of General Aviation Technology, Zhengzhou University of Aeronautics, Zhengzhou 450046, Henan , China
  • 3Henan Aerospace Electronic Information Technology Collaborative Innovation Center, Zhengzhou University of Aeronautics, Zhengzhou 450046, Henan , China
  • show less
    References(32)

    [15] Qiu C H. Infrared and visible light outdoors image fusion based on convolutional neural network[J]. Optical Technique, 48, 492-498(2022).

    [24] Li W J, Lü X Y, Zhou Y Y et al. SeACPFusion: an Adaptive Fusion Network for Infrared and Visible Images based on brightness perception[J]. Infrared Physics & Technology, 142, 105541(2024).

    Tools

    Get Citation

    Copy Citation Text

    Linglin Bao, Pengge Ma, Long Wang, Jinwang Qian, Zhaoyu Liu, Qiuchun Jin. Dynamic Contrast Dual-Branch Feature Decomposition Network for Infrared-Visible Image Fusion[J]. Laser & Optoelectronics Progress, 2025, 62(16): 1637005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Jan. 15, 2025

    Accepted: Mar. 17, 2025

    Published Online: Aug. 11, 2025

    The Author Email: Pengge Ma (mapenge@163.com)

    DOI:10.3788/LOP250523

    CSTR:32186.14.LOP250523

    Topics