Journal of Synthetic Crystals, Volume. 53, Issue 3, 410(2024)

Recent Research Progress of Thin film Lithium Niobate Photodetector

XIE Hanrong1, YANG Tiefeng1、*, WEI Yuming1, GUAN Heyuan1, and LU Huihui1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(82)

    [1] [1] MATTHIAS B T, REMEIKA J P. Ferroelectricity in the ilmenite structure[J]. Physical Review, 1949, 76(12): 1886-1887.

    [2] [2] PETERSON G E, BALLMAN A A, LENZO P V, et al. Electro-optic properties of LiNbO3[J]. Applied Physics Letters, 1964, 5(3): 62-64.

    [3] [3] SMITH R G, NASSAU K, GALVIN M F. Efficient continuous optical second-harmonic generation[J]. Applied Physics Letters, 1965, 7(10): 256-258.

    [4] [4] NASSAU K, LEVINSTEIN H J, LOIACONO G M. Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching[J]. Journal of Physics and Chemistry of Solids, 1966, 27(6/7): 983-988.

    [5] [5] NASSAU K, LEVINSTEIN H J, LOIACONO G M. Ferroelectric lithium niobate. 2. Preparation of single domain crystals[J]. Journal of Physics and Chemistry of Solids, 1966, 27(6/7): 989-996.

    [6] [6] THIRUMAVALAVAN M, SITHARAMAN S, RAVI S, et al. Growth of large diameter lithium niobate single crystals by czochralski method[J]. Ferroelectrics, 1990, 102(1): 15-22.

    [7] [7] POPESCU S T, PETRIS A, VLAD V I. Interferometric measurement of the pyroelectric coefficient in lithium niobate[J]. Journal of Applied Physics, 2013, 113(4): 043101-043104.

    [8] [8] LEIDINGER M, FIEBERG S, WAASEM N, et al. Comparative study on three highly sensitive absorption measurement techniques characterizing lithium niobate over its entire transparent spectral range[J]. Optics Express, 2015, 23(17): 21690-21705.

    [9] [9] SMOLENSKII G A, KRAINIK N N, KHUCHUA N P, et al. The curie temperature of LiNbO3[J]. Physica Status Solidi B Basic Research, 1966, 13(2): 309-314.

    [10] [10] YANG J F, HUANG C X, SUN J, et al. Study on precise determination of lithium content in the LiNbO3 crystals[J]. Journal of Synthetic Crystals, 2014, 43(4): 738-742 (in Chinese).

    [11] [11] WEIS R S, GAYLORD T K. Lithium niobate: summary of physical properties and crystal structure[J]. Applied Physics A, 1985, 37(4): 191-203.

    [12] [12] ANDRUSHCHAK A S, CHERNYHIVSKY E M, GOTRA Z Y, et al. Spatial anisotropy of the acousto-optical efficiency in lithium niobate crystals[J]. Journal of Applied Physics, 2010, 108(10): 103118-103122.

    [13] [13] JIN M W, CHEN J Y, SUA Y M, et al. Efficient electro-optical modulation on thin-film lithium niobate[J]. Optics Letters, 2021, 46(8): 1884-1887.

    [14] [14] WANG C, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562: 101-104.

    [15] [15] WANG C, ZHANG M, STERN B, et al. Nanophotonic lithium niobate electro-optic modulators[J]. Optics Express, 2018, 26(2): 1547-1555.

    [16] [16] JIN M W, CHEN J Y, SUA Y M, et al. High-extinction electro-optic modulation on lithium niobate thin film[J]. Optics Letters, 2019, 44(5): 1265-1268.

    [17] [17] BAZZAN M, SADA C. Optical waveguides in lithium niobate: recent developments and applications[J]. Applied Physics Reviews, 2015, 2(4): 040603.

    [18] [18] CHEN Z Y, CHENG J X, CHEN H X, et al. High performance Zn diffused Mg doped LN crystal ridge waveguide devices[J]. Journal of Synthetic Crystals, 2022, 51(11): 1823-1829 (in Chinese).

    [19] [19] HONARDOOST A, ABDELSALAM K, FATHPOUR S. Rejuvenating a versatile photonic material: thin-film lithium niobate[J]. Laser & Photonics Reviews, 2020, 14(9): 2000088.

    [20] [20] BETTS R A, PITT C W. Growth of thin-film lithium niobate by molecular beam epitaxy[J]. Electronics Letters, 1985, 21(21): 960.

    [21] [21] MYERS L E, BOSENBERG W R. Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators[J]. IEEE Journal of Quantum Electronics, 1997, 33(10): 1663-1672.

    [22] [22] NIU Y R, YAN X, CHEN J X, et al. Research progress on periodically poled lithium niobate for nonlinear frequency conversion[J]. Infrared Physics & Technology, 2022, 125: 104243.

    [23] [23] SHANDAROV S M, MANDEL A E, ANDRIANOVA A V, et al. Linear diffraction of light waves in periodically poled lithium niobate crystal[J]. Ferroelectrics, 2017, 508(1): 49-57.

    [24] [24] ZHANG M, BUSCAINO B, WANG C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 2019, 568: 373-377.

    [25] [25] XU M Y, HE M B, ZHU Y T, et al. Flat optical frequency comb generator based on integrated lithium niobate modulators[J]. Journal of Lightwave Technology, 2022, 40(2): 339-345.

    [26] [26] WANG X H, JIA K P, CHEN M W, et al. 2 μm optical frequency comb generation via optical parametric oscillation from a lithium niobate optical superlattice box resonator[J]. Photonics Research, 2022, 10(2): 509-515.

    [27] [27] WIDIYATMOKO B, IMAI K, KOUROGI M, et al. Second-harmonic generation of an optical frequency comb at 1.55 μm with periodically poled lithium niobate[J]. Optics Letters, 1999, 24(5): 315-317.

    [28] [28] ZHU D, SHAO L B, YU M J, et al. Integrated photonics on thin-film lithium niobate[J]. Advances in Optics and Photonics, 2021, 13(2): 242-352.

    [29] [29] QI Y F, LI Y. Integrated lithium niobate photonics[J]. Nanophotonics, 2020, 9(6): 1287-1320.

    [30] [30] VAZIMALI M G, FATHPOUR S. Applications of thin-film lithium niobate in nonlinear integrated photonics[J]. Advanced Photonics, 2022, 4(3): 034001.

    [31] [31] TIAN X H, SHANG M H, ZHU S N, et al. Lithium niobate based photonic quantum devices and integration technology: opportunities and challenges[J]. Physics, 2023, 52(8): 534-541 (in Chinese).

    [32] [32] CHENG Y. Thin-film lithium niobate optoelectronic devices and ultra-large-scale photonic integration[J]. Chinese Journal of Lasers, 2024, 51(1): 0119002 (in Chinese).

    [33] [33] LIU H X, PAN B C, HUANG Y S, et al. Ultra-compact lithium niobate photonic chip for high-capacity and energy-efficient wavelength-division-multiplexing transmitters[J]. Light: Advanced Manufacturing, 2023, 4(2): 1.

    [34] [34] ESIN A A, AKHMATKHANOV A R, SHUR V Y. The electronic conductivity in single crystals of lithium niobate and lithium tantalate family[J]. Ferroelectrics, 2016, 496(1): 102-109.

    [35] [35] MANSINGH A, DHAR A. The AC conductivity and dielectric constant of lithium niobate single crystals[J]. Journal of Physics D Applied Physics, 1985, 18(10): 2059-2071.

    [36] [36] SHEN X G, XU Y, DONG Y, et al. Thin-film lithium niobate-silicon nitride electro-optic modulator based on embedded filling layer[J]. Acta Optica Sinica, 2023, 43(14): 1413001 (in Chinese).

    [37] [37] ZHANG S G, YAO J H, LI Y N, et al. Experimental research on congruent LiNbO3 waveguide fabricated by femtosecond laser pulses[J]. Acta Photonica Sinica, 2009, 38(1): 26-29 (in Chinese).

    [38] [38] QIU W T, NDAO A, VILA V C, et al. Fano resonance-based highly sensitive, compact temperature sensor on thin film lithium niobate[J]. Optics Letters, 2016, 41(6): 1106-1109.

    [39] [39] ABRAHAMS S C, MARSH P. Defect structure dependence on composition in lithium niobate[J]. Acta Crystallographica Section B Structural Science, 1986, 42(1): 61-68.

    [40] [40] XUE D, KITAMURA K. Crystallographic structure and ferroelectric lithium niobate[J]. Transactions-Materials Research Society Of Japan, 2003, 28(4): 1191.

    [41] [41] IYI N, KITAMURA K, IZUMI F, et al. Comparative study of defect structures in lithium niobate with different compositions[J]. Journal of Solid State Chemistry, 1992, 101(2): 340-352.

    [42] [42] SAFARYAN F P, FEIGELSON R S, PETROSYAN A M. An approach to the defect structure analysis of lithium niobate single crystals[J]. Journal of Applied Physics, 1999, 85(12): 8079-8082.

    [43] [43] LAURIA S, SALEH M F. Mixing second- and third-order nonlinear interactions in nanophotonic lithium-niobate waveguides[J]. Physical Review A, 2022, 105(4): 043511.

    [44] [44] WEI D Z, WANG C W, WANG H J, et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal[J]. Nature Photonics, 2018, 12: 596-600.

    [45] [45] JI L, YU J, NI W J, et al. Numerical analysis of geometric parameters in periodic electric poled lithium niobate[J]. Journal of Synthetic Crystals, 2005, 34(5): 920-925 (in Chinese).

    [46] [46] CHEN H W, HU X P, ZHU S N. Optical superlattice: from bulk to thin film[J]. Journal of Synthetic Crystals, 2022, 51(9-10): 1527-1534. (in Chinese).

    [47] [47] HU Y Z, HUANG Z J, ZENG X Z, et al. Resonant nonlinear nanostructured grating in an unstructured lithium niobate on insulator platform[J]. Optical Materials Express, 2023, 13(10): 2904.

    [48] [48] HUANG Z J, LUO K W, FENG Z W, et al. Resonant enhancement of second harmonic generation in etchless thin film lithium niobate heteronanostructure[J]. Science China Physics, Mechanics & Astronomy, 2022, 65(10): 104211.

    [49] [49] ROUSSEY M, BERNAL M P, COURJAL N, et al. Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons[J]. Applied Physics Letters, 2006, 89(24): 241110.

    [50] [50] CHIRAKADZE A, MACHAVARIANI S, NATSVLISHVILI A, et al. Dispersion of the linear electro-optic effect in lithium niobate[J]. Journal of Physics D: Applied Physics, 1990, 23(9): 1216-1218.

    [51] [51] SHANG J M, CHEN H J, SUI Z, et al. Electro-optic high-speed optical beam shifting based on a lithium niobate tapered waveguide[J]. Optics Express, 2022, 30(9): 14530-14537.

    [52] [52] XU Y, ZHENG K P, SHANG J M, et al. Wavefront shaping for reconfigurable beam steering in lithium niobate multimode waveguide[J]. Optics Letters, 2022, 47(2): 329-332.

    [53] [53] KOSOROTOV V F, KREMENCHUGSKIJ L S, LEVASH L V, et al. Tertiary pyroelectric effect in lithium niobate and lithium tantalate crystals[J]. Ferroelectrics, 1986, 70(1): 27-37.

    [54] [54] KITAMURA K, HATANO H, TAKEKAWA S, et al. Large pyroelectric effect in Fe-doped lithium niobate induced by a high-power short-pulse laser[J]. Applied Physics Letters, 2010, 97(8): 082903.

    [55] [55] BHOWMICK S, IODICE M, GIOFFR M, et al. Investigation of pyroelectric fields generated by lithium niobate crystals through integrated microheaters[J]. Sensors and Actuators A: Physical, 2017, 261: 140-150.

    [56] [56] YAMADA T, NIIZEKI N, TOYODA H. Piezoelectric and elastic properties of lithium niobate single crystals[J]. Japanese Journal of Applied Physics, 1967, 6(2): 151.

    [57] [57] BOES A, CHANG L, LANGROCK C, et al. Lithium niobate photonics: unlocking the electromagnetic spectrum[J]. Science, 2023, 379(6627): eabj4396.

    [58] [58] XU X D, GABOR N M, ALDEN J S, et al. Photo-thermoelectric effect at a graphene interface junction[J]. Nano Letters, 2010, 10(2): 562-566.

    [59] [59] YUAN H T, LIU X G, AFSHINMANESH F, et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction[J]. Nature Nanotechnology, 2015, 10: 707-713.

    [60] [60] YANG H, TAN C W, DENG C Y, et al. Bolometric effect in Bi2O2Se photodetectors[J]. Small, 2019, 15(43): 1904482.

    [61] [61] XIE H R, YANG T F, XIE M Y, et al. Dual-crossbar configurated Bi2O2Se device for multiple optoelectronic applications[J]. Laser & Photonics Reviews, 2024: 2301129.

    [62] [62] HU S Q, TIAN R J, GAN X T. Two-dimensional material photodetector for hybrid silicon photonics[J]. Chinese Optics, 2021, 14(5): 1039-1055 (in Chinese).

    [63] [63] LIANG X J, GUAN H Y, LUO K W, et al. Van der waals integrated LiNbO3/WS2 for high-performance UV-vis-NIR photodetection[J]. Laser & Photonics Reviews, 2023, 17(10): 2300286.

    [64] [64] DONG H, RAN C X, GAO W Y, et al. Metal halide perovskite for next-generation optoelectronics: progresses and prospects[J]. eLight, 2023, 3(1): 3.

    [65] [65] DESIATOV B, LONCˇAR M. Silicon photodetector for integrated lithium niobate photonics[J]. Applied Physics Letters, 2019, 115(12): 121108.

    [66] [66] ZHANG X, LIU X Y, MA R, et al. Heterogeneously integrated III-V-on-lithium niobate broadband light sources and photodetectors[J]. Optics Letters, 2022, 47(17): 4564-4567.

    [67] [67] GUO X W, SHAO L B, HE L Y, et al. High-performance modified uni-traveling carrier photodiode integrated on a thin-film lithium niobate platform[J]. Photonics Research, 2022, 10(6): 1338.

    [68] [68] XUE Y, WU X X, CHEN K X, et al. Waveguide integrated high-speed black phosphorus photodetector on a thin film lithium niobate platform[J]. Optical Materials Express, 2023, 13(1): 272.

    [69] [69] WANG S F, CHAPMAN R J, JOHNSON B C, et al. Integration of black phosphorus photoconductors with lithium niobate on insulator photonics[J]. Advanced Optical Materials, 2023, 11(2): 2201688.

    [70] [70] ZHU S, ZHANG Y W, REN Y, et al. Waveguide-integrated two-dimensional material photodetectors in thin-film lithium niobate[J]. Advanced Photonics Research, 2023, 4(7): 2370015.

    [71] [71] WEI C, YU Y R, WANG Z Y, et al. Ultra-wideband waveguide-coupled photodiodes on a thin-film lithium niobate platform[J]. Light: Advanced Manufacturing, 2023: 07861.

    [72] [72] CHEN J M, LU S J, HU Y T, et al. Ultrasensitive bidirectional photoresponse SnSe2 photodetector integration with thin-film lithium niobate photonics[J]. Advanced Optical Materials, 2023: 2301543.

    [73] [73] HUANG T J, MA C C. Characterization of response of ZnO/LiNbO3-based surface acoustic wave delay line photodetector[J]. Japanese Journal of Applied Physics, 2008, 47(8R): 6507.

    [74] [74] BAEUMER C, SALDANA-GRECO D, MARTIREZ J M P, et al. Ferroelectrically driven spatial carrier density modulation in graphene[J]. Nature Communications, 2015, 6: 6136.

    [75] [75] GOPALAN K K, JANNER D, NANOT S, et al. Mid-infrared pyroresistive graphene detector on LiNbO3[J]. Advanced Optical Materials, 2016: 1600723.

    [76] [76] SASSI U, PARRET R, NANOT S, et al. Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance[J]. Nature Communications, 2017, 8: 14311.

    [77] [77] SHIMATANI M, OGAWA S, FUKUSHIMA S, et al. Enhanced photogating via pyroelectric effect induced by insulator layer for high-responsivity long-wavelength infrared graphene-based photodetectors operating at room temperature[J]. Applied Physics Express, 2019, 12(2): 025001.

    [78] [78] GUAN H Y, HONG J Y, WANG X L, et al. Broadband, high-sensitivity graphene photodetector based on ferroelectric polarization of lithium niobate[J]. Advanced Optical Materials, 2021, 9(16): 2100245.

    [79] [79] ALWAZNY M S, ISMAIL R A, SALIM E T. High-quantum efficiency of Au@LiNbO3 core-shell nano composite as a photodetector by two-step laser ablation in liquid[J]. Applied Physics A, 2022, 128(6): 500.

    [80] [80] SUN X L, SHENG Y, GAO X, et al. Self-powered lithium niobate thin-film photodetectors[J]. Small, 2022, 18(35): e2203532.

    [81] [81] HE Z G, GUAN H Y, LIANG X J, et al. Broadband, polarization-sensitive, and self-powered high-performance photodetection of hetero-integrated MoS2 on lithium niobate[J]. Research, 2023, 6: 0199.

    [82] [82] JIN C Y, WANG C X, QU L, et al. Fast lithium niobate photodetector[J]. Laser & Photonics Reviews, 2023, 17(12): 2300503.

    Tools

    Get Citation

    Copy Citation Text

    XIE Hanrong, YANG Tiefeng, WEI Yuming, GUAN Heyuan, LU Huihui. Recent Research Progress of Thin film Lithium Niobate Photodetector[J]. Journal of Synthetic Crystals, 2024, 53(3): 410

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 8, 2024

    Accepted: --

    Published Online: Jul. 30, 2024

    The Author Email: YANG Tiefeng (yangtiefeng2022@jnu.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics