Laser & Optoelectronics Progress, Volume. 60, Issue 22, 2212002(2023)

Object Edge Detection Algorithm Based on Improved Canny Algorithm

Xinshan Yu, Xiangyin Meng*, Tengfei Jin, and Jinze Luo
Author Affiliations
  • School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
  • show less
    Figures & Tables(12)
    Relationship between FPR indicator and function shape
    Shapes of different functions at the same scale. (a) Optimal function; (b) Cauchy edge detection function; (c) the first derivative of the Gaussian function
    Spatial structures of the edge detection function.(a) (b) γ=0.5, W=1; (c) γ=1.1, W=1; (d) γ=0.5, W=2
    Edge detection filters. (a) Unnormalized operator; (b) normalized operator
    rice image and its x-direction edge results. (a) Original image; (b) unnormalized filter edge image; (c) normalized filter edge image
    Performance indicators of noise reduction algorithms
    Comparison of the effects of different noise reduction algorithms. (a) Noisy image; (b) adaptive median-filtered image; (c) median-filtered image
    P-R curves of different algorithms on the BSDS500 dataset
    Comparison of edge results of different algorithms. (a) Canny algorithm; (b) Canny-Cauchy algorithm; (c) algorithm from reference [16]; (d) Sobel algorithm
    • Table 1. Optimal edge detection function at different scales

      View table

      Table 1. Optimal edge detection function at different scales

      nxmaxa1a2a3a4αω
      11.4-0.003610.004002.13381-1.004002.955841.72579
      21.60.002530.006861.51633-1.006862.686332.19106
      31.80.02537-0.056803.59605-0.943202.192750.47157
      42.0-0.04449-0.041592.12745-0.958411.831400.96353
    • Table 2. Theoretical performance parameters of the edge detection function

      View table

      Table 2. Theoretical performance parameters of the edge detection function

      WxmaxΣΛFPR
      OptGaussCauchyGaussCauchy
      W = 10.154.210.9211.4641.0000.996
      0.32.870.9211.4461.0000.983
      0.52.130.9211.4041.0000.955
      0.81.570.9211.3170.9990.892
      1.01.330.9201.2510.9980.840
      1.21.120.9181.1860.9960.785
      W = 21.41.720.9211.3481.0000.915
      1.61.570.9211.3171.0000.892
      1.81.450.9211.2840.9950.867
      2.01.340.9211.2510.9910.840
    • Table 3. Edge results of different algorithms on the BSDS500 dataset

      View table

      Table 3. Edge results of different algorithms on the BSDS500 dataset

      AlgorithmODSOISAPR50FPS
      Human0.8000.800
      Canny0.6100.6560.5760.75740
      Canny-Cauchy0.6560.6930.6350.82732
      Algorithm of reference[160.5990.6430.5660.73738
      Sobel0.5520.5850.5210.60460
    Tools

    Get Citation

    Copy Citation Text

    Xinshan Yu, Xiangyin Meng, Tengfei Jin, Jinze Luo. Object Edge Detection Algorithm Based on Improved Canny Algorithm[J]. Laser & Optoelectronics Progress, 2023, 60(22): 2212002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Dec. 26, 2022

    Accepted: Feb. 16, 2023

    Published Online: Nov. 16, 2023

    The Author Email: Meng Xiangyin (xymeng@swjtu.edu.cn)

    DOI:10.3788/LOP223400

    Topics