Laser & Optoelectronics Progress, Volume. 61, Issue 12, 1200005(2024)

Progress in Novel View Synthesis Using Neural Radiance Fields

Gaoxiang He1,2, Bin Zhu1,2、*, Bo Xie1,2, and Yi Chen1,2
Author Affiliations
  • 1State Key Laboratory of Pulsed Power Laser Technology, College of Electronic Engineering, National University of Defense Technology, Hefei 230037, Anhui , China
  • 2Infrared and Low Temperature Plasma Key Laboratory of Anhui Province, Hefei 230037, Anhui , China
  • show less
    Figures & Tables(12)
    Schematic of novel view synthesis[7]
    Overview of novel view synthesis based on NeRF
    Pipeline of NeRF[15]. (a) Generating sampling points from rays; (b) calculating the color and density of sampling points; (c) calculating ray color through volume rendering; (d) optimizing radiation field
    Qualitative comparison of partial models on 360v2 dataset[44]
    Comparison of Ha-NeRF and NeRF-W on Phototourism dataset[48]
    Train pipeline of the MVSNeRF[55]
    Comparison of FreeNeRF and NeRF on multiple datasets[65]
    Algorithm flowchart of Plenoxels model[39]
    Effect showcase of Instant NGP on Lego scene[46]
    • Table 1. Quantitative comparison of related models on 360v2 dataset

      View table

      Table 1. Quantitative comparison of related models on 360v2 dataset

      ModelPSNRSSIMLPIPS
      NeRF1524.850.6590.426
      Mip-NeRF2524.040.6160.441
      Plenoxels3924.670.6490.417
      DVGOv23825.420.6950.429
      NeRF++1626.210.7290.348
      Mip-NeRF3603427.690.7920.237
      Instant NGP4625.680.7050.302
      NeRFAcc4527.580.292
      Zip-NeRF4428.540.8280.189
    • Table 2. Quantitative comparison of sparse view models on DTU dataset

      View table

      Table 2. Quantitative comparison of sparse view models on DTU dataset

      MethodPSNRSSIMLPIPS
      PixelNeRF1818.950.7100.269
      MVSNeRF5518.540.7690.197
      DS-NeRF5816.900.5700.450
      SparseNeRF5919.470.8290.183
      DietNeRF6111.850.6330.314
      RegNeRF6218.890.7450.190
      InfoNeRF6311.230.4450.543
      FreeNeRF6519.920.787
    • Table 3. Quantitative comparison of partial models on the NeRF-Synthetic dataset

      View table

      Table 3. Quantitative comparison of partial models on the NeRF-Synthetic dataset

      ModelPSNRSSIMLPIPSSpeed /(frame·s-1Training time
      NeRF1531.010.9470.0810.02356 h
      NSVF4231.750.9530.0470.815100 h
      PlenOctrees6831.710.9580.053167.6858 h
      DVGO6931.950.9570.05314.2 min
      DVGOv23832.760.9620.0466 min
      Plenoxels3931.710.9580.04911 min
      ReLU fields7030.040.0510 min
      TensoRF7233.140.9630.04717.6 min
      PlenVDB4131.9020.7512.4 min
      EfficientNeRF7131.680.9540.028238.466 h
      Instant NGP4632.110.9610.0535 min
      NeRFAcc4533.110.0534.5 min
    Tools

    Get Citation

    Copy Citation Text

    Gaoxiang He, Bin Zhu, Bo Xie, Yi Chen. Progress in Novel View Synthesis Using Neural Radiance Fields[J]. Laser & Optoelectronics Progress, 2024, 61(12): 1200005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jun. 21, 2023

    Accepted: Sep. 4, 2023

    Published Online: Jun. 3, 2024

    The Author Email: Bin Zhu (zhubineei@163.com)

    DOI:10.3788/LOP231578

    CSTR:32186.14.LOP231578

    Topics