Laser & Optoelectronics Progress, Volume. 62, Issue 4, 0415003(2025)

Polyp Segmentation Based on GODC-U-Net Model

Gangning Lou1、*, Peibo Sun1, Shaoyao Liang1, Li Zhang1, Jiaqi Liu2, Gangjian Hu1, Liang Shen1, Yongcheng Ji1, and Yupeng Guo3
Author Affiliations
  • 1College of Electronic Science and Engineering, Jilin University, Changchun 130012, Jilin , China
  • 2School of Business and Management, Jilin University, Changchun 130012, Jilin , China
  • 3College of Chemistry, Jilin University, Changchun 130012, Jilin , China
  • show less
    Figures & Tables(15)
    Diagram of GODC-U-Net
    Diagram of GODC block
    Comparison of GELU, ReLU, and ELU
    Diagram of GODConv layer
    Partial experimental results of polyp image segmentation based on GODC-U-Net. (a)‒(d) Original input images; (e)‒(h) ground truth masks; (j)‒(m) model predicted images
    • Table 1. Polyp segmentation datasets used in the experiment

      View table

      Table 1. Polyp segmentation datasets used in the experiment

      DatasetResolution /(pixel×pixel)Number of items
      Kvasir-SEG16720×576‒1920×1072500
      CVC-ClinicDB17384×288612
      CVC-ColonDB18500×288300
      ETIS-LaribPolyDB191255×966196
    • Table 2. Comparison of loss function methods

      View table

      Table 2. Comparison of loss function methods

      Loss functionmDicemIoU
      0.5 Dice loss + 0.5 Focal loss0.92460.8519
      0.3 Dice loss + 0.7 Focal loss0.92340.8512
      0.7 Dice loss + 0.3 Focal loss0.92930.8529
    • Table 3. Performance of different optimizers

      View table

      Table 3. Performance of different optimizers

      OptimizermDicemIoU
      Adam0.91830.8439
      SGDW0.90670.8426
      DiffGrad0.90310.8408
      AdamP0.92540.8512
      AdamW0.92890.8527
    • Table 4. Comparison of different models on the Kvasir-SEG dataset

      View table

      Table 4. Comparison of different models on the Kvasir-SEG dataset

      MethodmDicemIoUPrecisionRecallAccuracy
      U-Net130.86550.76290.85930.87180.9563
      HarDNet-DFUS250.86260.75840.93510.80050.9583
      HRNetV2260.85360.74380.87780.82970.9539
      MSRF-Net100.85080.74040.89930.80740.9543
      Polyp2Seg270.91830.88280.92740.85370.9713
      PEFNet280.89210.83360.90310.83540.9612
      MSNet290.90710.86220.92640.90370.9689
      PraNet80.90940.83390.95990.86470.9738
      Polyp-Mixer90.91670.86410.93830.89750.9653
      Proposed0.92930.87290.91850.92280.9786
    • Table 5. Comparison of different models on the CVC-ClinicDB dataset

      View table

      Table 5. Comparison of different models on the CVC-ClinicDB dataset

      MethodmDicemIoUPrecisionRecallAccuracy
      U-Net130.76230.61710.79890.73030.9599
      HarDNet-DFUS250.70360.56820.87480.59850.9648
      HRNetV2260.77760.63610.8260.73460.9629
      MSRF-Net100.90670.82820.95470.86210.9842
      Polyp2Seg270.77940.62980.82940.74640.9679
      PEFNet280.86650.81440.94860.85840.9816
      MSNet290.92160.87920.98030.90860.9891
      PraNet80.87420.77660.96080.80280.9786
      Polyp-Mixer90.93840.89360.97130.83650.9784
      Proposed0.93350.90630.97870.91650.9919
    • Table 6. Comparison of different models on the CVC-ColonDB dataset

      View table

      Table 6. Comparison of different models on the CVC-ColonDB dataset

      MethodmDicemIoUPrecisionRecallAccuracy
      U-Net130.80320.70370.81640.82740.9807
      HarDNet-DFUS250.73980.58740.95720.60570.9761
      HRNetV2260.63830.46870.58580.7010.9565
      MSRF-Net100.83710.71980.86030.81510.9829
      Polyp2Seg270.80860.72730.83170.84810.9812
      PEFNet280.71860.63810.81590.82920.9786
      MSNet290.75570.67850.84720.86730.9874
      PraNet80.91310.84010.96570.86590.9901
      Polyp-Mixer90.79160.70610.84380.85910.9837
      Proposed0.91420.87340.95560.95360.9936
    • Table 7. Comparison of different models on the ETIS-LaribPolypDB dataset

      View table

      Table 7. Comparison of different models on the ETIS-LaribPolypDB dataset

      MethodmDicemIoUPrecisionRecallAccuracy
      U-Net130.78640.67940.78670.80260.9786
      HarDNet-DFUS250.84670.71970.90170.76190.9824
      HRNetV2260.50790.34950.50370.51940.9531
      MSRF-Net100.80670.67290.94320.71530.9824
      Polyp2Seg270.88250.73530.76180.87340.9373
      PEFNet280.83640.69730.83340.73150.9863
      MSNet290.71910.66470.77290.69670.9646
      PraNet80.87370.74370.81730.75490.9737
      Polyp-Mixer90.75960.67640.79540.74390.9743
      Proposed0.88490.78460.92770.89450.9835
    • Table 8. Experimental results of different models on the CVC-ClinicDB dataset (trained on the Kvasir-SEG dataset)

      View table

      Table 8. Experimental results of different models on the CVC-ClinicDB dataset (trained on the Kvasir-SEG dataset)

      MethodmDicemIoUPrecisionRecallAccuracy
      U-Net130.64920.46410.59810.65940.9367
      HarDNet-DFUS250.52460.43970.64390.61370.9283
      HRNetV2260.70640.55670.70670.68190.9482
      MSRF-Net100.59430.45370.63850.68410.9519
      Polyp2Seg270.64920.51970.75610.69790.9424
      PEFNet280.67390.59320.80320.71380.9396
      MSNet290.59460.49670.73810.57380.9167
      PraNet80.72610.63320.82760.71940.9516
      Polyp-Mixer90.70340.60940.84090.70380.9437
      Proposed0.72710.63410.83960.72830.9512
    • Table 9. Experimental results of different models on the Kvasir-SEG dataset (trained on the CVC-ClinicDB dataset)

      View table

      Table 9. Experimental results of different models on the Kvasir-SEG dataset (trained on the CVC-ClinicDB dataset)

      MethodmDicemIoUPrecisionRecallAccuracy
      U-Net130.50470.31970.40750.65370.7634
      HarDNet-DFUS250.61760.47390.84690.60170.9261
      HRNetV2260.51370.32460.41490.76140.7548
      MSRF-Net100.48730.30750.37410.70430.6832
      Polyp2Seg270.60610.50760.79350.68430.9274
      PEFNet280.58780.47910.75790.71840.8657
      MSNet290.54810.46320.69830.65420.8413
      PraNet80.59370.49320.70870.61720.8964
      Polyp-Mixer90.61830.51730.81420.75790.9318
      Proposed0.62590.51950.76370.75340.9183
    • Table 10. Results of ablation experiment

      View table

      Table 10. Results of ablation experiment

      MethodmDicemIoU
      GODC-U-Net0.92930.8729
      GODC-U-Net without GODConv0.86280.8002
      GODC-U-Net without SMP200.92510.8638
      GODC-U-Net without Hybrid Loss0.92600.8632
    Tools

    Get Citation

    Copy Citation Text

    Gangning Lou, Peibo Sun, Shaoyao Liang, Li Zhang, Jiaqi Liu, Gangjian Hu, Liang Shen, Yongcheng Ji, Yupeng Guo. Polyp Segmentation Based on GODC-U-Net Model[J]. Laser & Optoelectronics Progress, 2025, 62(4): 0415003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Apr. 7, 2024

    Accepted: Jun. 27, 2024

    Published Online: Feb. 18, 2025

    The Author Email:

    DOI:10.3788/LOP241038

    CSTR:32186.14.LOP241038

    Topics