Acta Optica Sinica, Volume. 44, Issue 10, 1026019(2024)
Complex Frequency Analysis of Coupled Plasmonic Systems (Invited)
[1] Schuller J A, Barnard E S, Cai W S et al. Plasmonics for extreme light concentration and manipulation[J]. Nature Materials, 9, 193-204(2010).
[2] Mejía-Salazar J R, Oliveira O N,. Plasmonic biosensing[J]. Chemical Reviews, 118, 10617-10625(2018).
[3] Brolo A G. Plasmonics for future biosensors[J]. Nature Photonics, 6, 709-713(2012).
[4] Taylor A B, Zijlstra P. Single-molecule plasmon sensing: current status and future prospects[J]. ACS Sensors, 2, 1103-1122(2017).
[5] Chung T, Lee S Y, Song E Y et al. Plasmonic nanostructures for nano-scale bio-sensing[J]. Sensors, 11, 10907-10929(2011).
[6] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).
[7] Zia R, Schuller J A, Chandran A et al. Plasmonics: the next chip-scale technology[J]. Materials Today, 9, 20-27(2006).
[8] Luk'yanchuk B, Zheludev N I, Maier S A et al. The Fano resonance in plasmonic nanostructures and metamaterials[J]. Nature Materials, 9, 707-715(2010).
[9] Atwater H A, Polman A. Plasmonics for improved photovoltaic devices[J]. Nature Materials, 9, 205-213(2010).
[10] Fang A, Koschny T, Wegener M et al. Self-consistent calculation of metamaterials with gain[J]. Physical Review B, 79, 241104(2009).
[11] Grgić J, Ott J R, Wang F W et al. Fundamental limitations to gain enhancement in periodic media and waveguides[J]. Physical Review Letters, 108, 183903(2012).
[12] Stockman M I. Spaser action, loss compensation, and stability in plasmonic systems with gain[J]. Physical Review Letters, 106, 156802(2011).
[13] Baranov D G, Krasnok A, Alù A. Coherent virtual absorption based on complex zero excitation for ideal light capturing[J]. Optica, 4, 1457-1461(2017).
[14] Kim S, Lepeshov S, Krasnok A et al. Beyond bounds on light scattering with complex frequency excitations[J]. Physical Review Letters, 129, 203601(2022).
[15] Li H N, Mekawy A, Krasnok A et al. Virtual parity-time symmetry[J]. Physical Review Letters, 124, 193901(2020).
[16] Tetikol H S, Aksun M I. Enhancement of resolution and propagation length by sources with temporal decay in plasmonic devices[J]. Plasmonics, 15, 2137-2146(2020).
[17] Guan F X, Guo X D, Zeng K B et al. Overcoming losses in superlenses with synthetic waves of complex frequency[J]. Science, 381, 766-771(2023).
[18] Zeng K B, Wu C C, Guo X D et al. Synthesized complex-frequency excitation for ultrasensitive molecular sensing[J]. eLight, 4, 1(2024).
[19] Zheng G X, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 10, 308-312(2015).
[20] Ye W M, Guo Q H, Xiang Y J et al. Phenomenological modeling of geometric metasurfaces[J]. Optics Express, 24, 7120-7132(2016).
[21] Zeng P, Cadusch J, Chakraborty D et al. Photoinduced electron transfer in the strong coupling regime: waveguide-plasmon polaritons[J]. Nano Letters, 16, 2651-2656(2016).
[22] Törmä P, Barnes W L. Strong coupling between surface plasmon polaritons and emitters: a review[J]. Reports on Progress in Physics, 78, 013901(2015).
[23] Yang J H, Sun Q, Ueno K et al. Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes[J]. Nature Communications, 9, 4858(2018).
Get Citation
Copy Citation Text
Kebo Zeng, Shuang Zhang. Complex Frequency Analysis of Coupled Plasmonic Systems (Invited)[J]. Acta Optica Sinica, 2024, 44(10): 1026019
Category: Physical Optics
Received: Mar. 5, 2024
Accepted: Apr. 7, 2024
Published Online: Apr. 26, 2024
The Author Email: Zhang Shuang (shuzhang@hku.hk)
CSTR:32393.14.AOS240692