Optics and Precision Engineering, Volume. 32, Issue 12, 1941(2024)
Part segmentation method of point cloud considering optimal allocation and optimal mask
[1] CHARLES R Q, HAO S, MO K C et al. PointNet: deep learning on point sets for 3D classification and segmentation[C], 77-85(2017).
[3] WANG Y, SUN Y B, LIU Z W et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 38, 1-12(2019).
[4] LI Y, BU R, SUN M et al. PointCNN: Convolution on Χ-transformed points[C], 31(2018).
[5] SHEN Y R, FENG C, YANG Y Q et al. Mining point cloud local structures by kernel correlation and graph pooling[C], 4548-4557(2018).
[6] WU W X, QI Z A, LI F X. PointConv: deep convolutional networks on 3D point clouds[C], 9613-9622(2019).
[7] THOMAS H, QI C R, DESCHAUD J E et al. KPConv: flexible and deformable convolution for point clouds[C], 6410-6419(2019).
[8] XU M T, DING R Y, ZHAO H S et al. PAConv: position adaptive convolution with dynamic kernel assembling on point clouds[C], 3172-3181(2021).
[9] HALEVY A, NORVIG P, PEREIRA F. The unreasonable effectiveness of data[J]. IEEE Intelligent Systems, 24, 8-12(2009).
[10] SUN C, SHRIVASTAVA A, SINGH S et al. Revisiting unreasonable effectiveness of data in deep learning era[C], 843-852(2017).
[11] Chen Y, Hu V T, Gavves E et al. Pointmixup: augmentation for point clouds[C], 330-345(28).
[12] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 60, 84-90(2017).
[13] LECUN Y, BOTTOU L, BENGIO Y et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 86, 2278-2324(1998).
[14] MORENO-BAREA F J, STRAZZERA F, JEREZ J M et al. Forward noise adjustment scheme for data augmentation[C], 728-734(2018).
[16] INOUE H. Data augmentation by pairing samples for images classification[J]. arXiv preprint(2018).
[17] ZHONG Z, ZHENG L, KANG G L et al. Random erasing data augmentation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 13001-13008(2020).
[21] YUN S, HAN D, CHUN S et al. CutMix: Regularization strategy to train strong classifiers with localizable features[C], 6022-6031(2019).
[22] CRESWELL A, WHITE T, DUMOULIN V et al. Generative adversarial networks: an overview[J]. IEEE Signal Processing Magazine, 35, 53-65(2018).
[24] SHESHAPPANAVAR S V, SINGH V V, KAMBHAMETTU C. PatchAugment: local neighborhood augmentation in point cloud classification[C], 2118-2127(2021).
[25] KIM S, LEE S, HWANG D et al. Point cloud augmentation with weighted local transformations[C], 528-537(2021).
[26] LI R H, LI X Z, HENG P A et al. PointAugment: an auto-augmentation framework for point cloud classification[C], 6377-6386(2020).
[27] ZHANG J, CHEN L, OUYANG B et al. Pointcutmix: Regularization strategy for point cloud classification[J]. Neurocomputing, 505, 58-67(2022).
[28] LEE D, LEE J, LEE J et al. Regularization strategy for point cloud via rigidly mixed sample[C], 15895-15904(2021).
[30] KIM J H, CHOO W, SONG H O. Puzzle Mix: exploiting saliency and local statistics for optimal mixup[C], 5275-5285(2020).
[31] HUANG S L, WANG X C, TAO D C. SnapMix: semantically proportional mixing for augmenting fine-grained data[C], 35, 1628-1636(2021).
[32] LEE S, JEON M, KIM I et al. Sagemix: saliency-guided mixup for point clouds[C], 35, 23580-23592(2022).
[33] LEE C H, VARSHNEY A, JACOBS D W. Mesh saliency[C], 659-666(2005).
[34] CHANG AX, FUNKHOUSER T, GUIBAS L et al. ShapeNet: an information-rich 3d model repository[J]. arXiv preprint(2015).
Get Citation
Copy Citation Text
Xijiang CHEN, Xi SUN, Bufan ZHAO, Qing AN, Xianquan HAN. Part segmentation method of point cloud considering optimal allocation and optimal mask[J]. Optics and Precision Engineering, 2024, 32(12): 1941
Category:
Received: Nov. 28, 2023
Accepted: --
Published Online: Aug. 28, 2024
The Author Email: Xi SUN (3022669424@qq.com)