Laser & Optoelectronics Progress, Volume. 62, Issue 4, 0428003(2025)

Multi-Level Branch Cross-Scale Fusion Network for High-Precision Semantic Segmentation in Complex Remote Sensing Environments

Junying Zeng*, Senyao Deng, Chuanbo Qin, Yikui Zhai, Xudong Jia, Yajin Gu, and Jiahua Xu
Author Affiliations
  • School of Electronics and Information Engineering, Wuyi University, Jiangmen 529020, Guangdong , China
  • show less
    Figures & Tables(20)
    Architecture of MBCFNet
    Details of the operation of the shallow Swin Transformer
    Spatial squeeze module
    Spatial refinement module
    Cross-scale fusion module
    Multi-scale decoding module
    Semantic segmentation prediction maps of different models on the Vaihingen dataset
    Semantic segmentation prediction maps of different models on the Potsdam dataset
    Semantic segmentation prediction maps of different models on the Uavid dataset
    Confusion matrix comparison between MBCFNet and the suboptimal model on three remote sensing datasets
    Visualization of the ablation experiments for different branch fusions
    Visualization of the ablation experiments for different shallow networks
    Visualization of the ablation experiments for the proposed modules
    • Table 1. Parameters of the convolutional layers in the semantic branch

      View table

      Table 1. Parameters of the convolutional layers in the semantic branch

      Layer nameDetailDimension
      Layer 1Conv7×7,stride is 2Conv3×3Conv3×3Conv1×1×4H4×W4×2C
      Layer 2Conv5×5,stride is 2Conv3×3Conv3×3Conv1×1×6H8×W8×4C
      Layer 3Conv3×3,stride is 2Conv3×3Conv1×1H16×W16×8C
      Layer 4Conv3×3,stride is 2Conv3×3Conv1×1H32×W32×16C
      Layer 5Conv3×3,stride is 2Conv3×3Conv1×1H64×W64×32C
    • Table 2. Comparative results of different models on the Vaihingen dataset

      View table

      Table 2. Comparative results of different models on the Vaihingen dataset

      MethodClass IoUmIoUmF1OAmPrecisionmRecall
      back.clu.cartreelow veg.build.imp. sur.
      MBCFNet91.9876.0987.3582.7493.7389.6886.9391.5893.3591.7291.44
      U-Net63.5275.5785.5981.5493.6989.4481.5686.7588.6986.9586.55
      DeepLabV3+86.1266.9283.9578.2192.7586.8082.4688.3590.2588.5188.19
      BiSeNetV191.8067.6282.8476.8392.3286.2882.9588.9491.2589.3388.55
      CCNet71.1075.0784.2778.7492.5686.7781.4286.5588.4486.8786.23
      Mit-B286.9769.2585.1881.1592.4889.6484.2189.9191.9290.2889.54
      ST-UNet67.7875.3881.2275.4690.6985.2579.3084.9285.3785.6684.19
      GLOTS87.6063.6684.7980.0193.6388.9983.1189.4691.3989.5389.39
    • Table 3. Comparative results of different models on the Potsdam dataset

      View table

      Table 3. Comparative results of different models on the Potsdam dataset

      MethodClass IoUmIoUmF1OAmPrecisionmRecall
      back. clu.cartreelow veg.build.imp. surf.
      MBCFNet63.8886.2385.9585.9694.2290.8284.5189.4391.3590.0588.82
      U-Net45.6182.7081.7080.9389.8087.6278.0683.8587.7783.9383.77
      DeepLabV3+55.1583.8781.4679.7193.0087.5880.1386.1988.4187.1385.27
      BiSeNetV152.8382.4681.7781.1992.6988.0779.8485.9588.3586.9584.97
      CCNet52.1283.4780.0480.8394.1987.3579.6785.7888.3186.8484.74
      Mit-B258.3884.8282.5682.5693.6988.9781.8387.5089.1287.7787.23
      ST-UNet62.8581.1877.4778.4593.5687.9280.2486.5588.5387.5185.61
      GLOTS63.8280.5679.7977.6393.6785.9180.2386.4888.4987.4685.52
    • Table 4. Comparative results of different models on the Uavid dataset

      View table

      Table 4. Comparative results of different models on the Uavid dataset

      MethodClass IoUmIoUmF1OAmPrecisionmRecall
      clu.build.roadtreelow veg.mov. carsta. carhum.
      MBCFNet71.4186.1179.2783.4773.7077.4769.8855.1074.5581.3286.7082.0580.60
      U-Net55.6777.5461.9374.5649.8568.3152.1853.1161.6469.1775.1569.4368.91
      DeepLabV3+64.4984.1273.4879.5761.6974.3558.5054.1468.7974.6281.2375.6373.63
      BiSeNetV160.6584.6773.8778.3459.4370.3353.4552.6666.6873.6381.0274.8572.45
      CCNet59.6483.7572.5376.9757.0768.7553.5252.5365.6072.5980.1073.0072.18
      Mit-B269.6185.2482.7483.0171.9870.0962.2528.3269.1676.6681.8777.0676.26
      ST-UNet64.2981.5274.0274.4364.7876.9468.9459.0970.5077.1982.2377.5676.82
      GLOTS70.9284.0083.6482.8372.6574.7668.3250.8973.5079.7184.9480.5078.94
    • Table 5. Ablation results of different branch fusions on three remote sensing datasets

      View table

      Table 5. Ablation results of different branch fusions on three remote sensing datasets

      DatasetMainBoundarySpatialmIoUmF1OA
      Vaihingen××84.7990.1390.23
      ×85.1690.2691.42
      ×85.2490.3391.46
      86.9391.5893.35
      Potsdam××80.8886.7388.51
      ×81.5087.1189.03
      ×82.3987.8189.39
      84.5189.4391.35
      Uavid××71.2577.6383.81
      ×72.5478.3984.59
      ×73.0578.8984.92
      74.5581.3286.70
    • Table 6. Ablation results of different shallow networks on three remote sensing datasets

      View table

      Table 6. Ablation results of different shallow networks on three remote sensing datasets

      DatasetShallow networkmIoUmF1OA
      VaihingenResNet83.5589.6791.63
      Mit85.8190.6691.85
      Swin Transformer86.9391.5893.35
      PotsdamResNet81.1986.9888.99
      Mit82.3187.6389.16
      Swin Transformer84.5189.4391.35
      UavidResNet71.1977.5883.05
      Mit73.2879.1885.51
      Swin Transformer74.5581.3286.70
    • Table 7. Ablation results of the proposed modules on the three remote sensing datasets

      View table

      Table 7. Ablation results of the proposed modules on the three remote sensing datasets

      DatasetModulemIoUmF1OA
      Cross-scale fusionMulti-scale decoding
      Vaihingen××82.2788.2588.70
      ×86.2991.0892.46
      ×85.8890.8491.93
      86.9391.5893.35
      Potsdam××81.0286.8288.87
      ×83.6988.8090.25
      ×83.1588.5989.78
      84.5189.4391.35
      Uavid××70.0777.0682.12
      ×74.0280.8986.51
      ×73.6979.5185.68
      74.5581.3286.70
    Tools

    Get Citation

    Copy Citation Text

    Junying Zeng, Senyao Deng, Chuanbo Qin, Yikui Zhai, Xudong Jia, Yajin Gu, Jiahua Xu. Multi-Level Branch Cross-Scale Fusion Network for High-Precision Semantic Segmentation in Complex Remote Sensing Environments[J]. Laser & Optoelectronics Progress, 2025, 62(4): 0428003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Apr. 22, 2024

    Accepted: Jul. 10, 2024

    Published Online: Feb. 10, 2025

    The Author Email:

    DOI:10.3788/LOP241148

    CSTR:32186.14.LOP241148

    Topics