Laser & Optoelectronics Progress, Volume. 62, Issue 4, 0417001(2025)
Multiscale Feature and Attention Mechanism for Blood Vessel Segmentation in Fundus Images
Fig. 5. Preprocessing images. (a) Grayscale image; (b) standardized image; (c) CLAHE image; (d) gamma-corrected image
Fig. 6. Image local sample blocks and corresponding gold standard blocks. (a) Integration diagram of the local sample blocks; (b) integration diagram of the corresponding gold standard blocks
Fig. 7. Segmentation results by different algorithms. (a) Original images; (b) gold standard images; (c) MSF-DA-Unet; (d) U-Net; (e) LadderNet; (f) AttU-Net; (g) UNet++
Fig. 8. Detailed segmentation results by different algorithms. (a) Original images; (b) gold standard images; (c) MSF-DA-Unet; (d) U-Net; (e) LadderNet; (f) AttU-Net; (g) UNet++
Fig. 9. Segmentation results by different improved networks. (a) Original images; (b) gold standard images; (c) U-Net; (d) dilated residual module; (e) DRA module; (f) MSF-DA-Unet
|
|
|
|
|
|
Get Citation
Copy Citation Text
Guangcen Ma, Jinzhi Zhou, Haoyang He, Saifeng Li. Multiscale Feature and Attention Mechanism for Blood Vessel Segmentation in Fundus Images[J]. Laser & Optoelectronics Progress, 2025, 62(4): 0417001
Category: Medical Optics and Biotechnology
Received: Jun. 12, 2024
Accepted: Jul. 9, 2024
Published Online: Feb. 11, 2025
The Author Email:
CSTR:32186.14.LOP241471