Laser & Optoelectronics Progress, Volume. 62, Issue 4, 0417001(2025)

Multiscale Feature and Attention Mechanism for Blood Vessel Segmentation in Fundus Images

Guangcen Ma1,2、*, Jinzhi Zhou1,2, Haoyang He1,2, and Saifeng Li1,2
Author Affiliations
  • 1School of Information Engineering, Southwest University of Science and Technology, Mianyang 621000, Sichuan , China
  • 2Robot Technology Used for Special Environment Key Laboratory of Sichuan Province, Mianyang 621000, Sichuan , China
  • show less
    Figures & Tables(15)
    Structure of the MSF-DA-Unet network
    Structure of the DRA module
    Structure of the DA module
    Structure of the AFF module
    Preprocessing images. (a) Grayscale image; (b) standardized image; (c) CLAHE image; (d) gamma-corrected image
    Image local sample blocks and corresponding gold standard blocks. (a) Integration diagram of the local sample blocks; (b) integration diagram of the corresponding gold standard blocks
    Segmentation results by different algorithms. (a) Original images; (b) gold standard images; (c) MSF-DA-Unet; (d) U-Net; (e) LadderNet; (f) AttU-Net; (g) UNet++
    Detailed segmentation results by different algorithms. (a) Original images; (b) gold standard images; (c) MSF-DA-Unet; (d) U-Net; (e) LadderNet; (f) AttU-Net; (g) UNet++
    Segmentation results by different improved networks. (a) Original images; (b) gold standard images; (c) U-Net; (d) dilated residual module; (e) DRA module; (f) MSF-DA-Unet
    • Table 1. Results comparison of the model on the DRIVE dataset under different weight factors

      View table

      Table 1. Results comparison of the model on the DRIVE dataset under different weight factors

      Weight factorAUCAccSeSpF1 score
      0.10.98030.96240.80610.98470.8268
      0.20.98080.96250.80820.98430.8273
      0.30.98120.96240.81050.98400.8275
      0.40.98170.96230.81060.98400.8296
      0.50.98210.96240.81090.98390.8298
      0.60.98300.96250.81250.98370.8303
      0.70.98340.96250.81320.98360.8306
      0.80.98350.96240.81210.98370.8309
      0.90.98380.96250.81080.98390.8297
    • Table 2. Effect comparison of different loss functions

      View table

      Table 2. Effect comparison of different loss functions

      Loss functionAUCAccSeSpF1 score
      Cross-entropy loss0.97980.96240.81220.98320.8302
      Focal loss0.98410.96250.80840.98530.8293
      Focal loss +Cross-entropy loss0.98340.96250.81320.98360.8306
    • Table 3. Effect comparison of different attention modules

      View table

      Table 3. Effect comparison of different attention modules

      Attention moduleAUCAccSeSpF1 score
      scSE0.98230.96140.80700.98340.8256
      DA0.98340.96250.81320.98360.8306
    • Table 4. Ablation experimental results on the DRIVE dataset

      View table

      Table 4. Ablation experimental results on the DRIVE dataset

      MethodAUCAccSeSpF1 score
      M10.97200.95260.77120.97560.8166
      M20.97410.95610.79670.98190.8252
      M30.97860.96010.80820.98120.8254
      M40.98220.95970.80430.98230.8270
      M50.98310.96170.80920.98400.8283
      M60.98340.96250.81320.98360.8306
    • Table 5. Comparison of different algorithms on the DRIVE dataset

      View table

      Table 5. Comparison of different algorithms on the DRIVE dataset

      AlgorithmAUCAccSeSpF1 score
      U-Net80.97200.95260.77120.97560.8166
      R2U-Net120.97840.95560.77920.98130.8171
      LadderNet130.97950.95610.78560.98100.8202
      AttU-Net230.97220.95640.79770.97990.8236
      UNet++240.97350.95700.80410.98030.8255
      DCU-net140.98100.95680.81150.97800.8272
      Shuffle-Unet150.97820.95610.78010.98280.8155
      Ref. [160.98070.95680.80540.97890.8261
      ResDO-UNet250.95630.79850.97910.8229
      IterMiUnet260.98100.95680.80530.97890.8262
      MSF-DA-Unet0.98340.96250.81320.98360.8306
    • Table 6. Comparison of different algorithms on the CHASE_DB1 dataset

      View table

      Table 6. Comparison of different algorithms on the CHASE_DB1 dataset

      AlgorithmAUCAccSeSpF1 score
      U-Net80.97320.95890.77070.97320.7873
      R2U-Net120.98150.96340.77560.98200.7928
      LadderNet130.98390.96520.79780.98180.8031
      AttU-Net230.97890.96520.81800.97990.8064
      UNet++240.97920.96570.78040.98340.8102
      DCU-net140.98720.96640.80750.98410.8278
      Shuffle-Unet150.98230.96420.77620.98250.7954
      Ref. [160.98360.96350.82400.97750.8052
      ResDO-UNet250.96720.80200.97940.8236
      IterMiUnet260.98120.95910.84410.97040.7856
      MSF-DA-Unet0.98700.96960.82590.98450.8215
    Tools

    Get Citation

    Copy Citation Text

    Guangcen Ma, Jinzhi Zhou, Haoyang He, Saifeng Li. Multiscale Feature and Attention Mechanism for Blood Vessel Segmentation in Fundus Images[J]. Laser & Optoelectronics Progress, 2025, 62(4): 0417001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Medical Optics and Biotechnology

    Received: Jun. 12, 2024

    Accepted: Jul. 9, 2024

    Published Online: Feb. 11, 2025

    The Author Email:

    DOI:10.3788/LOP241471

    CSTR:32186.14.LOP241471

    Topics