Journal of the Chinese Ceramic Society, Volume. 53, Issue 7, 1809(2025)
A First‑Principles Study of NASICON-Type Cathode Materials for Na‑Ion Batteries
[2] [2] XU C L, ZHAO J M, YANG C, et al. Polyanionic cathode materials for practical Na-ion batteries toward high energy density and long cycle life[J]. ACS Cent Sci, 2023, 9(9): 1721–1736.
[3] [3] ZHANG B W, MA K X, LV X, et al. Recent advances of NASICON-Na3V2(PO4)3 as cathode for sodium-ion batteries: Synthesis, modifications, and perspectives[J]. J Alloys Compd, 2021, 867: 159060.
[4] [4] QIN M L, QIN N N, LEI M J, et al. Construction of Na3V2(PO4)2F3@C/CNTs nanocomposites with three-dimensional conductive network as cathode materials for sodium-ion batteries[J]. J Electroanal Chem, 2022, 920: 116613.
[5] [5] ONG S P, CHEVRIER V L, HAUTIER G, et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials[J]. Energy Environ Sci, 2011, 4(9): 3680–3688.
[6] [6] PALOMARES V, SERRAS P, VILLALUENGA I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems[J]. Energy Environ Sci, 2012, 5(3): 5884–5901.
[8] [8] SLATER M D, KIM D, LEE E, et al. Sodium-ion batteries[J]. Adv Funct Mater, 2013, 23(8): 947–958.
[9] [9] XIANG X D, ZHANG K, CHEN J. Recent advances and prospects of cathode materials for sodium-ion batteries[J]. Adv Mater, 2015, 27(36): 5343–5364.
[10] [10] CHEN G X, HUANG Q, WU T, et al. Polyanion sodium vanadium phosphate for next generation of sodium-ion batteries: A review[J]. Adv Funct Mater, 2020, 30(34): 2001289.
[12] [12] HUANG H J, WU X W, GAO Y J, et al. Polyanionic cathode materials: A comparison between Na-ion and K-ion batteries[J]. Adv Energy Mater, 2024, 14(14): 2304251.
[13] [13] TIAN Z Y, CHEN Y J, CHENG J, et al. Boosting the rate capability and working lifespan of K/Co Co-doped Na3V2(PO4)3/C for sodium ion batteries[J]. Ceram Int, 2021, 47(15): 22025–22034.
[14] [14] LALRE F, SEZNEC V, COURTY M, et al. Improving the energy density of Na3V2(PO4)3-based positive electrodes through V/Al substitution[J]. J Mater Chem A, 2015, 3(31): 16198–16205.
[15] [15] CRIADO A, LAVELA P, PREZ-VICENTE C, et al. Effect of chromium doping on Na3V2(PO4)2F3@C as promising positive electrode for sodium-ion batteries[J]. J Electroanal Chem, 2020, 856: 113694.
[16] [16] ZHANG X H, RUI X H, CHEN D, et al. Na3V2(PO4)3: An advanced cathode for sodium-ion batteries[J]. Nanoscale, 2019, 11(6): 2556–2576.
[17] [17] HE F, KANG J Y, LIU T L, et al. Research progress on electrochemical properties of Na3V2(PO4)3 as cathode material for sodium-ion batteries[J]. Ind Eng Chem Res, 2023, 62(8): 3444–3464.
[18] [18] CHEN S Q, WU C, SHEN L F, et al. Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries[J]. Adv Mater, 2017, 29(48): 1700431.
[19] [19] LI S, DONG Y F, XU L, et al. Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries[J]. Adv Mater, 2014, 26(21): 3545–3553.
[20] [20] DELMAS C, CHERKAOUI F, NADIRI A, et al. A nasicon-type phase as intercalation electrode: NaTi2(PO4)3[J]. Mater Res Bull, 1987, 22(5): 631–639.
[21] [21] ZHOU W D, XUE L G, L X J, et al. NaxMV(PO4)3 (M = Mn, Fe, Ni) structure and properties for sodium extraction[J]. Nano Lett, 2016, 16(12): 7836–7841.
[22] [22] PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. J Electrochem Soc, 144(4): 1188–1194.
[23] [23] KIM J, SEO D H, KIM H, et al. Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries[J]. Energy Environ Sci, 2015, 8(2): 540–545.
[24] [24] WANG J Y, WANG Y, SEO D H, et al. A high-energy NASICON-type cathode material for Na-ion batteries[J]. Adv Energy Mater, 2020, 10(10): 1903968.
[25] [25] LIU R, XU G L, LI Q, et al. Exploring highly reversible 1.5-electron reactions (V3+/V4+/V5+) in Na3VCr(PO4)3 cathode for sodium-ion batteries[J]. ACS Appl Mater Interfaces, 2017, 9(50): 43632–43639.
[26] [26] WOOD S M, EAMES C, KENDRICK E, et al. Sodium ion diffusion and voltage trends in phosphates Na4M3(PO4)2P2O7 (M = Fe, Mn, co, Ni) for possible high-rate cathodes[J]. J Phys Chem C, 2015, 119(28): 15935–15941.
[28] [28] SHEN W, LI H, WANG C, et al. Improved electrochemical performance of the Na3V2(PO4)3 cathode by B-doping of the carbon coating layer for sodium-ion batteries[J]. J Mater Chem A, 2015, 3(29): 15190–15201.
[29] [29] ZHAO L N, ZHAO H L, DU Z H, et al. Computational and experimental understanding of Al-doped Na3V2–xAlx(PO4)3 cathode material for sodium ion batteries: Electronic structure, ion dynamics and electrochemical properties[J]. Electrochim Acta, 2018, 282: 510–519.
[30] [30] CHEN M Z, HUA W B, XIAO J, et al. Activating a multielectron reaction of NASICON-structured cathodes toward high energy density for sodium-ion batteries[J]. J Am Chem Soc, 2021, 143(43): 18091–18102.
[33] [33] ZHAO L N, ZHAO H L, LONG X Y, et al. Superior high-rate and ultralong-lifespan Na3V2(PO4)3@C cathode by enhancing the conductivity both in bulk and on surface[J]. ACS Appl Mater Interfaces, 2018, 10(42): 35963–35971.
[34] [34] KRESSE G, FURTHMLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput Mater Sci, 1996, 6(1): 15–50.
[35] [35] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys Rev B, 1999, 59(3): 1758–1775.
[36] [36] BLCHL P E. Projector augmented-wave method[J]. Phys Rev B, 1994, 50(24): 17953–17979.
[37] [37] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865–3868.
[38] [38] ERNZERHOF M, SCUSERIA G E. Assessment of the perdew–burke– ernzerhof exchange-correlation functional[J]. J Chem Phys, 1999, 110(11): 5029–5036.
[39] [39] HENKELMAN G, UBERUAGA B P, J3NSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. J Chem Phys, 2000, 113(22): 9901.
[41] [41] SONG W X, JI X B, WU Z P, et al. First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3[J]. J Mater Chem A, 2014, 2(15): 5358–5362.
Get Citation
Copy Citation Text
QIN Ruimin, ZHU Runxi, WU Tiantian, LI Long, DING Shujiang, SU Yaqiong. A First‑Principles Study of NASICON-Type Cathode Materials for Na‑Ion Batteries[J]. Journal of the Chinese Ceramic Society, 2025, 53(7): 1809
Special Issue:
Received: Dec. 26, 2024
Accepted: Aug. 12, 2025
Published Online: Aug. 12, 2025
The Author Email: