Chinese Optics, Volume. 18, Issue 2, 317(2025)

Infrared and visible image fusion guided by cross-domain interactive attention and contrastive learning

Jing DI1、*, Chan LIANG1, Ji-zhao LIU2, and Jing LIAN1
Author Affiliations
  • 1School of Electronic & Information Engineering, Lan Zhou Jiao Tong University, Lanzhou 730070, China
  • 2School of Information Science & Engineering, Lan Zhou University, Lanzhou 730070, China
  • show less
    Figures & Tables(14)
    Overall framework diagram of the network
    Detail-enhanced network architecture with dual-branch skip connections
    Image fusion network architecture with dual-branch joint encoder
    Network framework for contrastive learning of attributes and content
    Cross-domain interaction attention module
    Fusion results for seven groups of scenes processed by different algorithms in the TNO
    MSRS dataset daytime scene “00537D” fusion results
    MSRS dataset night scene “00881N” fusion results
    RoadSence “FLIR_08835” fusion results
    Results of ablation experiments
    • Table 1. Mean values of objective evaluation indices for 42 groups of images in the TNO

      View table
      View in Article

      Table 1. Mean values of objective evaluation indices for 42 groups of images in the TNO

      方法评价指标
      AGENSDVIFSFMIPSNRSSIMTime
      RFN-Nest2.6696.96336.8970.5595.8742.11362.1930.6490.249
      U2Fusion${\underline{\underline{5.023}}} $6.99737.6970.61911.8642.00562.8080.6050.354
      PIAFusion3.8286.81437.1410.7409.6203.35261.7760.4680.682
      SuperFusion2.4216.55830.6630.4226.2752.33060.979${\underline{\underline{0.753}}} $0.715
      SwinFusion3.5606.81934.8250.6588.9852.29762.5770.686${\underline{\underline{0.553}}} $
      SeAFusion4.980${\underline{\underline{7.133}}} $44.244${\underline{\underline{0.704}}} $12.253${\underline{\underline{2.833}}} $61.3920.6280.604
      TarDAL2.9986.840${\underline{\underline{45.212}}} $0.5397.9592.80262.3040.5973.159
      DIVFusion5.5607.59347.5260.62513.4632.21759.9790.4082.149
      DDFM5.1116.85437.0810.629${\underline{\underline{12.952}}} $2.04863.4660.6183.517
      LRRNet3.6006.83839.4990.5519.3312.51562.6560.5460.927
      SFCFusion4.3246.70031.2970.67511.4011.99763.1330.6872.578
      MTDFusion4.6126.69533.6690.57811.6432.25662.1500.7581.597
      本文方法5.6017.44350.8790.79214.7423.374${\underline{\underline{62.875}}} $0.8310.593
    • Table 2. Mean value of objective evaluation indices for 40 groups of images in MSRS

      View table
      View in Article

      Table 2. Mean value of objective evaluation indices for 40 groups of images in MSRS

      方法评价指标
      AGENSDVIFSFMIPSNRSSIMTime
      RFN-Nest1.5575.20925.9760.5554.7252.49867.1230.5650.428
      U2Fusion2.4095.33225.3030.5557.7092.24466.5990.5950.536
      PIAFusion3.5986.536$\underline{\underline{46.263}} $1.00810.9453.82564.4640.5450.892
      SuperFusion3.5986.46843.4690.9139.464$\underline{\underline{3.999}} $64.8510.5450.874
      SwinFusion3.5986.49144.2090.9139.7124.17364.8210.5450.724
      SeAFusion3.5986.54742.902$\underline{\underline{0.952}} $10.0473.77664.5700.581$\underline{\underline{0.647}} $
      TarDAL3.5983.31226.7920.16213.9731.24563.5440.2784.589
      DIVFusion4.3137.40654.2280.784$\underline{\underline{11.575}} $2.54556.3140.2433.248
      DDFM1.8485.64221.1440.5615.9222.41467.0880.7053.774
      LRRNet3.508$\underline{\underline{6.780}} $25.9760.85210.0583.20258.759$\underline{\underline{0.685}} $1.938
      SFCFusion$\underline{\underline{3.759}} $5.93330.8360.63611.4072.00266.7880.5262.549
      MTDFusion2.1145.58630.8360.3996.7272.09065.1100.6322.874
      本文方法4.7317.33156.8911.13813.2164.215$\underline{\underline{66.821}} $0.7320.698
    • Table 3. Mean value of objective evaluation indices for 221 groups of images in RoadSence

      View table
      View in Article

      Table 3. Mean value of objective evaluation indices for 221 groups of images in RoadSence

      方法评价指标
      AGENSDVIFSFMIPSNRSSIMTime
      RFN-Nest3.3627.33646.0250.5007.8522.73861.3660.6170.357
      U2Fusion6.0997.18340.0920.56415.2822.57861.3660.6960.684
      PIAFusion4.3086.98142.7020.68112.1323.55761.6800.6590.534
      SuperFusion4.4696.99041.3580.60812.185$\underline{\underline{3.562}} $62.1070.5660.824
      SwinFusion4.5167.00044.0670.61416.7203.33461.2970.529$\underline{\underline{0.545}} $
      SeAFusion$\underline{\underline{6.491}} $7.33049.6450.600$\underline{\underline{16.625}} $3.02261.7140.5840.657
      TarDAL6.6917.55059.3980.41816.1232.19159.5660.5523.924
      DIVFusion5.010${\underline{\underline{7.539}}} $54.1880.57213.2952.90061.7790.4412.842
      DDFM3.9526.86833.5510.53210.1742.84564.4840.6603.667
      LRRNet5.6927.526${\underline{\underline{54.772}}} $${\underline{\underline{0.631}}} $15.2233.51062.0250.7301.259
      SFCFusion6.3047.22241.4960.59115.9942.84263.7810.6701.842
      MTDFusion4.4077.05937.3560.57711.4172.896${\underline{\underline{64.440}}} $${\underline{\underline{0.728}}} $2.067
      本文方法6.9247.59660.8910.70316.8104.02762.3030.8040.573
    • Table 4. Mean values of objective evaluation indices in 10 groups of ablation experiment scenes

      View table
      View in Article

      Table 4. Mean values of objective evaluation indices in 10 groups of ablation experiment scenes

      模型AGENSDVIFSFMIPSNRSSIM
      实验17.3287.24852.3140.65216.2573.62854.2170.766
      实验25.6286.99548.3020.56318.0053.49557.4570.501
      实验36.7157.13745.5410.58918.1863.21456.2590.627
      实验46.3577.03350.2490.63717.8943.45557.2240.643
      实验57.7807.32452.4130.63317.9243.52758.1490.702
      本文方法8.3267.42161.6720.70918.2593.98959.2480.791
    Tools

    Get Citation

    Copy Citation Text

    Jing DI, Chan LIANG, Ji-zhao LIU, Jing LIAN. Infrared and visible image fusion guided by cross-domain interactive attention and contrastive learning[J]. Chinese Optics, 2025, 18(2): 317

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 14, 2024

    Accepted: --

    Published Online: May. 19, 2025

    The Author Email:

    DOI:10.37188/CO.2024-0147

    Topics