Photonics Research, Volume. 9, Issue 10, 2088(2021)
Highly efficient achromatic subdiffraction focusing lens in the near field with large numerical aperture
[1] E. Abbe. Resolution of microscopes. Arch. Mikrosk. Anat, 9, 413-468(1873).
[2] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85, 3966-3969(2000).
[3] N. Fang, H. Lee, C. Sun, X. Zhang. Negative refraction makes a perfect lens. Science, 308, 534-537(2005).
[4] T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand. Near-field microscopy through a SiC superlens. Science, 313, 1595(2006).
[5] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C. M. Soukoulis. Subwavelength resolution in a two-dimensional photonic-crystal-based superlens. Phys. Rev. Lett., 91, 207401(2003).
[6] K. Aydin, I. Bulu, E. Ozbay. Subwavelength resolution with a negative-index metamaterial superlens. Appl. Phys. Lett., 90, 254102(2007).
[7] W. Cai, D. A. Genov, V. M. Shalaev. Superlens based on metal-dielectric composites. Phys. Rev. B, 72, 193101(2005).
[8] V. A. Podolskiy, E. E. Narimanov. Near-sighted superlens. Opt. Lett, 30, 75-77(2005).
[9] A. Salandrino, N. Engheta. Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys. Rev. B, 74, 075103(2006).
[10] Z. Jacob, L. V. Alekseyev, E. Narmanov. Optical hyperlenses: far-field imaging beyond the diffraction limit. Opt. Express, 14, 8247-8256(2006).
[11] Z. W. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 315, 1686(2007).
[12] J. B. Sun, M. I. Shalaev, N. M. Litchinitser. Experimental demonstration of a non-resonant hyperlens in the visible spectral range. Nat. Commun, 6, 7201(2015).
[13] J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. W. Liu, H. Choi, G. Bartal, X. Zhang. Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat. Commun., 1, 143(2010).
[14] D. Z. Albert, L. Vaidman, Y. Aharonov. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett., 60, 1351-1354(1988).
[15] M. V. Berry. Evanescent and real waves in quantum billiards and Gaussian beams. J. Phys. A, 27, L391-L398(1994).
[16] M. V. Berry, S. Popescu. Evolution of quantum superoscillations and optical super resolution without evanescent waves. J. Phys. A, 39, 6965-6977(2006).
[17] K. Huang, H. P. Ye, J. H. Teng, S. P. Yeo, B. Luk’yanchuk, C.-W. Qiu. Optimization-free superoscillatory lens using phase and amplitude masks. Laser Photon. Rev., 8, 152-157(2014).
[18] E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, N. I. Zheludev. A super-oscillatory lens optical microscope for subwavelength imaging. Nat. Mater., 11, 432-435(2012).
[19] K. S. Rogers, E. T. F. Rogers, N. I. Zheludev, G. Yuan. Far-field superoscillatory metamaterial superlens. Phys. Rev. Appl., 11, 024073(2019).
[20] Q. Zhang, F. Dong, H. Li, Z. Wang, G. Liang, Z. Zhang, Z. Wen, Z. Shang, G. Chen, L. Dai, W. Chu. High-numerical-aperture dielectric metalens for super-resolution focusing of oblique incident light. Adv. Opt. Mater., 8, 1901885(2020).
[21] R. Zuo, W. Liu, H. Cheng, S. Chen, J. Tian. Breaking the diffraction limit with radially polarized light based on dielectric metalenses. Adv. Opt. Mater., 6, 1800795(2018).
[22] L. Chen, J. Liu, X. Zhang, D. Tang. Achromatic super-oscillatory metasurface through optimized multiwavelength functions for sub-diffraction focusing. Opt. Lett., 45, 5772-5775(2020).
[23] Z. Wu, F. Dong, S. Zhang, S. Yan, G. Liang, Z. Zhang, Z. Wen, G. Chen, L. Dai, W. Chu. Broadband dielectric metalens for polarization manipulating and superoscillation focusing of visible light. ACS Photon., 7, 180-189(2020).
[24] D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, X. Luo. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for sub-diffraction light focusing. Laser Photon. Rev., 9, 713-719(2015).
[25] D. Tang, L. Chen, J. Liu. Visible achromatic super-oscillatory metasurfaces for sub-diffraction focusing. Opt. Express, 27, 12308-12316(2019).
[26] E. T. Rogers, N. I. Zheludev. Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging. J. Opt., 15, 094008(2013).
[27] F. Qin, K. Huang, J. Wu, J. Teng, C.-W. Qiu, M. Hong. A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance. Adv. Mater., 29, 1602721(2017).
[28] C. L. Hao, Z. Q. Nie, H. P. Ye, H. Li, Y. Luo, R. Feng, X. Yu, F. Wen, Y. Zhang, C. Y. Yu, J. H. Teng, B. Luk’yanchuk, C.-W. Qiu. Three-dimensional supercritical resolved light-induced magnetic holography. Sci. Adv., 3, e1701398(2017).
[29] K. Huang, H. Liu, F. J. Garcia-Vidal, M. H. Hong, B. Luk’yanchuk, J. H. Teng, C.-W. Qiu. Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nat. Commun., 6, 7059(2015).
[30] X. Lu, Y. Guo, M. Pu, Y. Zhang, Z. Li, X. Ma, X. Luo. Broadband achromatic metasurfaces for sub-diffraction focusing in the visible. Opt. Express, 29, 5947-5958(2021).
[31] Y. J. Bao, J. C. Ni, C.-W. Qiu. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams. Adv. Mater., 32, 1905659(2020).
[32] S. Chen, Z. Li, W. Liu, H. Cheng, J. Tian. From single-dimensional to multidimensional manipulation of optical waves with metasurfaces. Adv. Mater., 31, 1802458(2019).
[33] S. Chen, W. W. Liu, Z. C. Li, H. Cheng, J. G. Tian. Metasurface-empowered optical multiplexing and multifunction. Adv. Mater., 32, 2070022(2020).
[34] S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang. A broadband achromatic metalens in the visible. Nat. Nanotechnol, 13, 227-232(2018).
[35] A. Ndao, L. Y. Hsu, J. Ha, J.-H. Park, C. Chang-Hasnain, B. Kante. Octave bandwidth photonic fishnet-achromatic-metalens. Nat. Commun., 11, 3205(2020).
[36] X. Luo, D. Tsai, M. Gu, M. Hong. Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion. Chem. Soc. Rev., 48, 2494-2548(2019).
[37] S. Shrestha, A. C. Overvig, M. Lu, A. Stein, N. Yu. Broadband achromatic dielectric metalenses. Light Sci. Appl., 7, 85(2018).
[38] S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan. Broadband achromatic optical metasurface devices. Nat. Commun., 8, 187(2017).
[39] S. M. Mansfield, G. S. Kino. Solid immersion microscope. Appl. Phys. Lett., 57, 2615-2616(1990).
[40] A. Bogucki, L. Zinkiewiz, M. Grzeszczyk, W. Pacuski, K. Nogajewski, T. Kazimierczuk, A. Rodek, J. Suffczynski, K. Watanabe, T. Taniguchi, P. Wasylczyk, M. Potemski, P. Kossacki. Ultra-long-working-distance spectroscopy of single nanostructures with aspherical solid immersion microlenses. Light Sci. Appl., 9, 48(2020).
[41] M.-S. Kim, T. Scharf, M. T. Haq, W. Nakagawa, H. P. Herzig. Subwavelength-size solid immersion lens. Opt. Lett., 36, 3930-3932(2011).
[42] J. Chen, X. Yuan, M. Chen, X. Cheng, A. Zhang, G. Peng, W. L. Song, D. Fang. Ultrabroadband three-dimensional printed radial perfectly symmetric gradient honeycomb all-dielectric dual-directional lightweight planar Luneburg lens. ACS Appl. Mater. Interfaces, 10, 38404-38409(2018).
[43] J. Chen, Y. Lin, G. Peng, Y. Huang, A. Zhang, W. L. Song, M. Chen, Z. Liu, D. Fang. An all-dielectric 3D Luneburg lens constructed by common-vertex coaxial circular cones. J. Phys. D, 53, 015110(2020).
[45] J. Chen, H. Chu, Y. Huang, Y. Lai, M. Chen, Z. Liu, D. Fang. Ultrabroadband compact lens antenna with high performance based on a transmission gradient index medium. J. Phys. D, 54, 175101(2020).
[46] J. Chen, H. Chu, Y. Lai, Z. Liu, H. Chen, M. Chen, D. Fang. Conformally mapped Mikaelian lens for broadband achromatic high resolution focusing. Laser Photon. Rev., 15, 2000564(2021).
[47] C. Guo, T. Urner, S. Jia. 3D light-field endoscopic imaging using a GRIN lens array. Appl. Phys. Lett., 116, 101105(2020).
[48] M. G. Scopelliti, M. Chamanzar. Ultrasonically sculpted virtual relay lens for
[49] J. Nagar, S. D. Campbell, D. H. Werner. Apochromatic singlets enabled by metasurface-augmented GRIN lenses. Optica, 5, 99-102(2018).
[50] W. Jiang, C.-W. Qiu, T. Han, Q. Cheng, H. Ma, S. Zhang, T. Cui. Broadband all-dielectric magnifying lens for far-field high-resolution imaging. Adv. Mater., 25, 6963-6968(2013).
[51] W. Jiang, S. Ge, T. Han, S. Zhang, M. Mehmood, C.-W. Qiu, T. Cui. Shaping 3D path of electromagnetic waves using gradient-refractive-index metamaterials. Adv. Sci., 3, 1600022(2016).
[52] N. Zhang, W. X. Jiang, H. F. Ma, W. X. Tang, T. J. Cui. Compact high-performance lens antenna based on impedance-matching gradient-index metamaterials. IEEE. Trans. Antennas. Propag., 67, 1323-1328(2018).
[53] A. Forbes. Common elements for uncommon light: vector beams with GRIN lenses. Light Sci. Appl., 8, 111(2019).
[54] O. Bitton, R. Bruch, U. Leonhardt. Two-dimensional Maxwell fisheye for integrated optics. Phys. Rev. Appl., 10, 044059(2018).
[55] A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, A. Faraon. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun., 6, 7069(2013).
[56] R. J. Potton. Reciprocity in optics. Rep. Prog. Phys., 67, 717-754(2004).
[57] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314, 977-980(2006).
Get Citation
Copy Citation Text
Jin Chen, Hongchen Chu, Yun Lai, Huanyang Chen, Weili Song, Mingji Chen, Daining Fang, "Highly efficient achromatic subdiffraction focusing lens in the near field with large numerical aperture," Photonics Res. 9, 2088 (2021)
Category: Optical Devices
Received: Apr. 12, 2021
Accepted: Aug. 20, 2021
Published Online: Oct. 18, 2021
The Author Email: Mingji Chen (mjchen81@bit.edu.cn)