Acta Optica Sinica, Volume. 44, Issue 5, 0523002(2024)
Design of Tunable Four-Broadband Terahertz Absorber
[1] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 292, 77-79(2001).
[2] Yuan Y, Bingham C, Tyler T et al. A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators[J]. Applied Physics Letters, 93, 191110(2008).
[3] Ogando K, Pastoriza H. Design of integration-ready metasurface-based infrared absorbers[J]. Journal of Applied Physics, 118, 043109(2015).
[4] Wu K M, Huang Y J, Wang H T L et al. Numerical and theoretical analysis on the absorption properties of metasurface-based terahertz absorbers with different thicknesses[J]. Applied Optics, 54, 299-305(2015).
[5] Bao Z Y, Wang J C, Hu Z D et al. Coordinated multi-band angle insensitive selection absorber based on graphene metamaterials[J]. Optics Express, 27, 31435-31445(2019).
[6] Bao Z Y, Wang J C, Hu Z D et al. Coordination multi-band absorbers with patterned irrelevant graphene patches based on multi-layer film structures[J]. Journal of Physics D, 54, 505306(2021).
[7] Song N T, Sun Q, Xu S et al. Ultrawide-band optically transparent antidiffraction metamaterial absorber with a Thiessen-polygon metal-mesh shielding layer[J]. Photonics Research, 11, 1354-1363(2023).
[8] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 85, 3966-3969(2000).
[9] Tang J X, Gong Y D, Pang K. Two-dimensional metasurface: application and research progress of metalenses[J]. Laser & Optoelectronics Progress, 60, 2100004(2023).
[10] Bilotti F, Tricarico S, Vegni L. Plasmonic metamaterial cloaking at optical frequencies[J]. IEEE Transactions on Nanotechnology, 9, 55-61(2010).
[11] Schurig D, Mock J J, Justice B J et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 314, 977-980(2006).
[12] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).
[13] Zong S, Zeng D W, Yuan W et al. Recent advances on perfect light absorbers and their promise for high-performance opto-electronic devices[J]. Chinese Optics Letters, 20, 073603(2022).
[14] Maier T, Brueckl H. Multispectral microbolometers for the midinfrared[J]. Optics Letters, 35, 3766-3768(2010).
[15] Grant J, Escorcia-Carranza I, Li C et al. A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer[J]. Laser & Photonics Reviews, 7, 1043-1048(2013).
[16] Jing X F, Qin G H, Zhang P. Broadband silicon-based tunable metamaterial microfluidic sensor[J]. Photonics Research, 10, 2876-2885(2022).
[17] Li R F, Wu D, Liu Y M et al. Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating[J]. Nanoscale Research Letters, 12, 1(2017).
[18] Karalis A, Joannopoulos J D. 'Squeezing' near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion[J]. Scientific Reports, 6, 28472(2016).
[19] Xiao D, Tao K Y. Ultra-compact metamaterial absorber for multiband light absorption at mid-infrared frequencies[J]. Applied Physics Express, 8, 102001(2015).
[20] Ouchi T, Kajiki K, Koizumi T et al. Terahertz imaging system for medical applications and related high efficiency terahertz devices[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 35, 118-130(2014).
[21] Zhang X J, Zhang Q, Lan G L et al. Nearly perfect absorber in borophene based on Tamm plasmon polaritons[J]. Acta Photonica Sinica, 52, 1052404(2023).
[22] Zhang X, Wang Y, Zhang W Y et al. Narrow band absorption and sensing properties of the THz metasurface based on single-walled carbon nanotubes[J]. Acta Physica Sinica, 73, 026102(2024).
[23] Shin J H, Park K H, Ryu H C. Electrically controllable terahertz square-loop metamaterial based on VO2 thin film[J]. Nanotechnology, 27, 195202(2016).
[24] Xu Z H, Wu D, Liu Y M et al. Design of a tunable ultra-broadband terahertz absorber based on multiple layers of graphene ribbons[J]. Nanoscale Research Letters, 13, 143(2018).
[25] Zhai Z C, Zhang L, Li X J et al. Tunable terahertz broadband absorber based on a composite structure of graphene multilayer and silicon strip array[J]. Optics Communications, 431, 199-202(2019).
[26] Zhu H L, Zhang Y, Ye L F et al. Dual-control and tunable broadband terahertz absorber based on graphene-vanadium dioxide[J]. Acta Optica Sinica, 42, 1423002(2022).
[27] Song Z Y, Wang Z S, Wei M L. Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces[J]. Materials Letters, 234, 138-141(2019).
[28] Chen Y T, Xue W R, Zhang J et al. Dynamically tunable infrared ultra-wideband absorber based on vanadium dioxide[J]. Chinese Journal of Lasers, 50, 1913001(2023).
[29] Jepsen P U, Fischer B M, Thoman A et al. Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy[J]. Physical Review B, 74, 205103(2006).
[30] Song Z Y, Wang K, Li J W et al. Broadband tunable terahertz absorber based on vanadium dioxide metamaterials[J]. Optics Express, 26, 7148-7154(2018).
[31] Hu N, Wu F L, Bian L A et al. Dual broadband absorber based on graphene metamaterial in the terahertz range[J]. Optical Materials Express, 8, 3899-3909(2018).
[32] Huang J, Li J N, Yang Y et al. Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide[J]. Optics Express, 28, 7018-7027(2020).
[33] Wang B X, Zhai X, Wang G Z et al. Design of a four-band and polarization-insensitive terahertz metamaterial absorber[J]. IEEE Photonics Journal, 7, 4600108(2015).
[34] Dayal G, Solanki A, Chin X Y et al. High-Q plasmonic infrared absorber for sensing of molecular resonances in hybrid lead halide perovskites[J]. Journal of Applied Physics, 122, 073101(2017).
[35] Liu X Y, Gao J S, Yang H G et al. Multiple infrared bands absorber based on multilayer gratings[J]. Optics Communications, 410, 438-442(2018).
[36] Bai J J, Zhang S S, Fan F et al. Tunable broadband THz absorber using vanadium dioxide metamaterials[J]. Optics Communications, 452, 292-295(2019).
[37] Wang T L, Zhang Y P, Zhang H Y et al. Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial[J]. Optical Materials Express, 10, 369-386(2020).
[38] Lian Y, Li Y K, Lou Y P et al. Adjustable trifunctional mid-infrared metamaterial absorber based on phase transition material VO2[J]. Nanomaterials, 13, 1829(2023).
[39] Wang Y, Chen Z, Cui Q. A tunable terahertz broadband bandpass filter based on vanadium dioxide[J]. Acta Optica Sinica, 41, 2023002(2021).
[40] Song Z Y, Wei M L, Wang Z S et al. Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces[J]. IEEE Photonics Journal, 11, 4600607(2019).
[41] Zhao Z Y, Zhao H W, Peng W et al. Polarization dependence of terahertz Fabry-Pérot resonance in flexible complementary metamaterials[J]. Plasmonics, 10, 1587-1592(2015).
[42] Zhao Y, Huang Q P, Cai H L et al. A broadband and switchable VO2-based perfect absorber at the THz frequency[J]. Optics Communications, 426, 443-449(2018).
[43] Fan H T, Xue W R, Chen Y T et al. Ultra-wideband UV absorber based on rhodium metal and silica materials[J]. Chinese Journal of Lasers, 51, 0213003(2024).
[44] Zhao L, Liu H, He Z H et al. Theoretical design of twelve-band infrared metamaterial perfect absorber by combining the dipole, quadrupole, and octopole plasmon resonance modes of four different ring-strip resonators[J]. Optics Express, 26, 12838-12851(2018).
[45] Wang J C, Wang X Y, Hu Z D et al. Independent tunable multi-band absorbers based on molybdenum disulfide metasurfaces[J]. Physical Chemistry Chemical Physics, 21, 24132-24138(2019).
[46] Zhu B, Wang Z B, Huang C et al. Polarization insensitive metamaterial absorber with wide incident angle[J]. Progress in Electromagnetics Research, 101, 231-239(2010).
Get Citation
Copy Citation Text
Ting Zhang, Taiming Guo, Junya Yan, Yanan Pei. Design of Tunable Four-Broadband Terahertz Absorber[J]. Acta Optica Sinica, 2024, 44(5): 0523002
Category: Optical Devices
Received: Nov. 7, 2023
Accepted: Dec. 13, 2023
Published Online: Mar. 19, 2024
The Author Email: Zhang Ting (zhangting_cai@163.com)
CSTR:32393.14.AOS231751