Acta Physica Sinica, Volume. 69, Issue 12, 126801-1(2020)

Liquid phase epitaxial layer by layer dipping assembly of metal-organic framework thin films and their physical property

Da-Wei Wang, Zhi-Gang Gu*, and Jian Zhang
Author Affiliations
  • State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
  • show less
    Figures & Tables(10)
    Structural model of MOF (top row) and the representative secondary building units (middle row), as well as ligands (down row)[1]
    Schematic diagram of liquid phase epitaxial layer by layer assembly of SURMOF [12].
    Schematic diagram of SURMOF prepared by liquid phase epitaxy layer by layer dipping method (P0, starting and final position for the sample holder; P1− P7, containers for immersion solutions; 1, Teflon working table; 2, container lid; 3, gripper; 4, sample holder; 5, sample; 6, position controller; 7, ultrasonic bath; 8, shower; 9, parking position of container lid; 10, pump and solution bottle for showering; 11, computer)[33].
    Schematic diagram of MOF grown on the hydroxyl and carboxyl-terminated substrate via liquid phase epitaxy layer by layer method[35]
    SEM image of HKUST-1 thin film[36]
    (a) Sample diagram of field effect transistor (OFET); (b) sketch diagram of HKUST-1 film modified SiO2 dielectric layer in the OFETs; (c) structure of semiconductor polymer PTB7-Th; (d) schematic diagram of liquid phase epitaxy layer by layer preparation of HKUST-1 and the structure; (e) the output characteristics of HKUST-1/SiO2/Si based OFETs; (f) the transmission characteristics of HKUST-1/SiO2/Si based OFETs[40].
    (a) Schematic diagram of Ln(pdc)3 encapsulated into SURMOF and grown in situ layer by layer using the liquid phase epitaxy method; (b) schematic diagram of Ln(pdc)3 structure; (c) photographs of Ln(pdc)3@HKUST-1 film on quartz glass under ultraviolet (365 nm) irradiation; (d) solid-phase photoluminescence emission spectra of Eu(pdc)3@HKUST-1, Tb(pdc)3@HKUST-1, Gd(pdc)3@HKUST-1 films; (e) CIE chromaticity coordinate chart of red, green, blue and wite emitting Ln(pdc)3@ HKUST-1 film[43].
    (a) SEM image of emission sensitization emission (A-B-A) heterostructure cross section on silicon substrate; (b) schematic diagram of A and B SURMOF heterojunction connection composed of different organic connectors; (c) the diffraction patterns of SURMOF prepared by Zn-ADB (A) and Zn-(Pd-DCP) (B); (d) the schematic diagram of photon upconversion of triplex excited state molecular transfer; (e) the schematic diagram of emission spectrum[44].
    (a) Schematic diagram of CDs prepared by MOF template method; (b) photos of the sample in the synthesis process; (c) photoluminescence of CD@HKUST-1-200 film; (d) open hole Z-scan data of CD@HKUST-1-200 film and HKUST-1 grown on quartz glass (point) and CDs aqueous solution made from G@HKUST-1 film with theoretical fitting data at 532 nm excitation wavelength[45]
    (a) Schematic diagram of layer by layer growth of oriented CoFe-PBA thin film on silicon substrate by LPE LBL method; (b) XRD comparison and (c) SEM image of oriented CoFe-PBA thin film in [100] plane (illustration shows the microstructure of CoFe PBA film on Si substrate); (d) linear sweep voltammetry curve with 2 mV/s scanning rate (IR corrected) of the sample; (e) the over potential required of different electrocatalyst to reach 10 mA/cm2; (f) the comparison of Tafel slope; (g) the comparison of electrochemical impedance spectra of CoFe2O4 film and CoFe2O4 powder at 1.5 V[48]
    Tools

    Get Citation

    Copy Citation Text

    Da-Wei Wang, Zhi-Gang Gu, Jian Zhang. Liquid phase epitaxial layer by layer dipping assembly of metal-organic framework thin films and their physical property[J]. Acta Physica Sinica, 2020, 69(12): 126801-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Feb. 24, 2020

    Accepted: --

    Published Online: Dec. 8, 2020

    The Author Email:

    DOI:10.7498/aps.69.20200274

    Topics