Journal of Synthetic Crystals, Volume. 51, Issue 5, 781(2022)
Research Progress of Cubic Boron Nitride
[1] [1] RODRGUEZ-HERNNDEZ P, GONZLEZ-DIAZ M, MUOZ A. Electronic and structural properties of cubic BN and BP[J]. Physical Review B, Condensed Matter, 1995, 51(20): 14705-14708.
[2] [2] ZHANG W J, CHONG Y M, BELLO I, et al. Nucleation, growth and characterization of cubic boron nitride (cBN) films[J]. Journal of Physics D: Applied Physics, 2007, 40(20): 6159-6174.
[3] [3] TSAO J Y, CHOWDHURY S, HOLLIS M A, et al. Ultrawide-bandgap semiconductors: research opportunities and challenges[J]. Advanced Electronic Materials, 2018, 4(1): 1600501.
[4] [4] WENTORF R H. Cubic form of boron nitride[J]. The Journal of Chemical Physics, 1957, 26(4): 956.
[5] [5] WENTORF R H. Synthesis of the cubic form of boron nitride[J]. The Journal of Chemical Physics, 1961, 34(3): 809-812.
[6] [6] HORIUCHI S, HE L L, ONODA M, et al. Monoclinic phase of boron nitride appearing during the hexagonal cubic phase transition at high pressure and high temperature[J]. Applied Physics Letters, 1996, 68(2): 182-184.
[7] [7] BUNDY F P, WENTORF R H. Direct transformation of hexagonal boron nitride to denser forms[J]. The Journal of Chemical Physics, 1963, 38(5): 1144-1149.
[8] [8] SINGHAL S K, DER GONNA J V, NOVER G, et al. Synthesis of cubic boron nitride at reduced pressures in the presence of Co [(NH3)6]Cl3 and NH4F[J]. Diamond and Related Materials, 2005, 14(8): 1389-1394.
[9] [9] MA K. Synthesis of cubic boron nitride under relatively lower pressure and lower temperature via chemical reaction[J]. Glass Physics and Chemistry, 2020, 46(2): 181-185.
[10] [10] BINDAL M M, SINGH B P, SINGHAL S K, et al. On the choice of hexagonal boron nitride for high pressure phase transformation using the catalyst solvent process[J]. Journal of Materials Science, 1991, 26(1): 196-202.
[11] [11] LORENZ H, ORGZALL I. Influence of the initial crystallinity on the high pressure-high temperature phase transition in boron nitride[J]. Acta Materialia, 2004, 52(7): 1909-1916.
[13] [13] MISHIMA O, YAMAOKA S, FUKUNAGA O. Crystal growth of cubic boron nitride by temperature difference method at ~55 kbar and ~1800 ℃[J]. Journal of Applied Physics, 1987, 61(8): 2822-2825.
[14] [14] TANIGUCHI T, YAMAOKA S. Spontaneous nucleation of cubic boron nitride single crystal by temperature gradient method under high pressure[J]. Journal of Crystal Growth, 2001, 222(3): 549-557.
[18] [18] WENTORF R H. Preparation of semiconducting cubic boron nitride[J]. The Journal of Chemical Physics, 1962, 36(8): 1990-1991.
[19] [19] MISHIMA O, ERA K, TANAKA J, et al. Ultraviolet light-emitting diode of a cubic boron nitride pn junction made at high pressure[J]. Applied Physics Letters, 1988, 53(11): 962-964.
[20] [20] TANIGUCHI T, TERAJI T, KOIZUMI S, et al. Appearance of n-type semiconducting properties of cBN single crystals grown at high pressure[J]. Japanese Journal of Applied Physics, 2002, 41(Part 2, No. 2A): L109-L111.
[21] [21] WANG C X, YANG G W, ZHANG T C, et al. High-quality heterojunction between p-type diamond single-crystal film and n-type cubic boron nitride bulk single crystal[J]. Applied Physics Letters, 2003, 83(23): 4854-4856.
[22] [22] SUMIYA H, HARANO K, ISHIDA Y. Mechanical properties of nano-polycrystalline cBN synthesized by direct conversion sintering under HPHT[J]. Diamond and Related Materials, 2014, 41: 14-19.
[23] [23] SOKOOWSKA A, WRONIKOWSKI M. The phase diagram (p, T, E) of boron nitride[J]. Journal of Crystal Growth, 1986, 76(2): 511-513.
[24] [24] MOSUANG T E, LOWTHER J E. Relative stability of cubic and different hexagonal forms of boron nitride[J]. Journal of Physics and Chemistry of Solids, 2002, 63(3): 363-368.
[25] [25] YU W J, LAU W M, CHAN S P, et al. Ab initio study of phase transformations in boron nitride[J]. Physical Review B, 2003, 67: 014108.
[26] [26] TOPSAKAL M, AKTRK E, CIRACI S. First-principles study of two- and one-dimensional honeycomb structures of boron nitride[J]. Physical Review B, 2009, 79(11): 115442.
[27] [27] AHMED R, FAZAL-E-ALEEM, HASHEMIFAR S J, et al. First principles study of structural and electronic properties of different phases of boron nitride[J]. Physica B: Condensed Matter, 2007, 400(1/2): 297-306.
[28] [28] SOKOOWSKI M. Deposition of wurtzite type boron nitride layers by reactive pulse plasma crystallization[J]. Journal of Crystal Growth, 1979, 46(1): 136-138.
[29] [29] ZHANG W J, MATSUMOTO S. Influence of experiment parameters on the growth of cBN films by bias-assisted direct current jet plasma chemical vapor deposition[J]. Journal of Materials Research, 2000, 15(12): 2677-2683.
[30] [30] FRIEDMANN T A, MIRKARIMI P B, MEDLIN D L, et al. Ion-assisted pulsed laser deposition of cubic boron nitride films[J]. Journal of Applied Physics, 1994, 76(5): 3088-3101.
[31] [31] CHEN G H, ZHANG X W, WANG B, et al. Optical absorption edge characteristics of cubic boron nitride thin films[J]. Applied Physics Letters, 1999, 75(1): 10-12.
[32] [32] LITVINOV D, TAYLOR C A II, CLARKE R. Semiconducting cubic boron nitride[J]. Diamond and Related Materials, 1998, 7(2/3/4/5): 360-364.
[33] [33] ZHANG X W, BOYEN H G, YIN H, et al. Microstructure of the intermediate turbostratic boron nitride layer[J]. Diamond and Related Materials, 2005, 14(9): 1474-1481.
[34] [34] KAWAMOTO S, NAKAKUMA T, TEII K, et al. Leakage current characteristics of thick cubic boron nitride films deposited on titanium[J]. Journal of Applied Physics, 2017, 122(22): 225108.
[35] [35] ZHANG F Q, GUO Y P, SONG Z Z, et al. Deposition of high quality cubic boron nitride films on nickel substrates[J]. Applied Physics Letters, 1994, 65(8): 971-973.
[36] [36] ZHU P W, ZHAO Y N, WANG B, et al. Prepared low stress cubic boron nitride film by physical vapor deposition[J]. Journal of Solid State Chemistry, 2002, 167(2): 420-424.
[37] [37] ZHANG X W, BOYEN H G, DEYNEKA N, et al. Epitaxy of cubic boron nitride on (001)-oriented diamond[J]. Nature Materials, 2003, 2(5): 312-315.
[38] [38] ZHANG W, BELLO I, LIFSHITZ Y, et al. Epitaxy on diamond by chemical vapor deposition: a route to high-quality cubic boron nitride for electronic applications[J]. Advanced Materials, 2004, 16(16): 1405-1408.
[39] [39] SOLTANI A, BARKAD H A, MATTALAH M, et al. 193 nm deep-ultraviolet solar-blind cubic boron nitride based photodetectors[J]. Applied Physics Letters, 2008, 92(5): 053501.
[40] [40] HE B, NG T W, LO M F, et al. Surface transfer doping of cubic boron nitride films by MoO3 and tetrafluoro-tetracyanoquinodimethane (F4-TCNQ)[J]. ACS Applied Materials & Interfaces, 2015, 7(18): 9851-9857.
[41] [41] YANG H S, IWAMOTO C, YOSHIDA T. Interface engineering of cBN films deposited on silicon substrates[J]. Journal of Applied Physics, 2003, 94(2): 1248-1251.
[42] [42] YANG H S, IWAMOTO C, YOSHIDA T. Direct nucleation of cubic boron nitride on silicon substrate[J]. Diamond and Related Materials, 2007, 16(3): 642-644.
[43] [43] ZHANG X W, YIN H, BOYEN H G, et al. Effects of crystalline quality on the phase stability of cubic boron nitride thin films under medium-energy ion irradiation[J]. Diamond and Related Materials, 2005, 14(9): 1482-1488.
[44] [44] SELL K, ULRICH S, NOLD E, et al. The constitution and properties of cubic boron nitride thin films: a comparative study on the influence of bombarding ion energy[J]. Surface and Coatings Technology, 2003, 174/175: 1121-1125.
[45] [45] KIM K B, KIM S H. Characterization of boron nitride film synthesized by Helicon wave plasma-assisted chemical vapor deposition[J]. Diamond and Related Materials, 2000, 9(1): 67-72.
[46] [46] FAN Y M, ZHANG X W, YOU J B, et al. Comparison and combination of several stress relief methods for cubic boron nitride films deposited by ion beam assisted deposition[J]. Surface and Coatings Technology, 2009, 203(10/11): 1452-1456.
[47] [47] BOYEN H G, WIDMAYER P, SCHWERTBERGER D, et al. Sequential ion-induced stress relaxation and growth: a way to prepare stress-relieved thick films of cubic boron nitride[J]. Applied Physics Letters, 2000, 76(6): 709-711.
[48] [48] YAMAMOTO K, KEUNECKE M, BEWILOGUA K. Deposition of well adhering cBN films up to 2 μm thickness by B-C-N gradient layer system[J]. Thin Solid Films, 2000, 377/378: 331-339.
[50] [50] OTAO-RIVERA W, MESSIER R, PILIONE L J, et al. Effect of Al additions and AlN interlayers on the stabilization of cBN sputtered thin films[J]. Diamond and Related Materials, 2004, 13(9): 1690-1696.
[52] [52] YE J, ULRICH S, ZIEBERT C, et al. Stress reduction of cubic boron nitride films by oxygen addition[J]. Thin Solid Films, 2008, 517(3): 1151-1155.
[53] [53] KIM H S, PARK J K, LEE W S, et al. Variation of residual stress in cubic boron nitride film caused by hydrogen addition during unbalanced magnetron sputtering[J]. Thin Solid Films, 2011, 519(22): 7871-7874.
[54] [54] PARK J K, KO J S, BAIK Y J. Effect of hydrogen addition on the residual stress of B-C-N films with cubic boron nitride phase prepared by R.F. magnetron sputtering of a B4C target[J]. Surface and Coatings Technology, 2013, 215: 104-109.
[55] [55] ULRICH S, NOLD E, SELL K, et al. Constitution of thick oxygen-containing cubic boron nitride films[J]. Surface and Coatings Technology, 2006, 200(22/23): 6465-6468.
[56] [56] ULRICH S, SCHWAN J, DONNER W, et al. Knock-on subplantation-induced formation of nanocrystalline c-BN with R.F. magnetron sputtering and R.F. argon ion plating[J]. Diamond and Related Materials, 1996, 5(3/4/5): 548-551.
[57] [57] KIM I H, KIM K S, KIM S H, et al. Synthesis of cubic boron nitride films using a Helicon wave plasma and reduction of compressive stress[J]. Thin Solid Films, 1996, 290/291: 120-125.
[58] [58] FITZ C, KOLITSCH A, FUKAREK W. Stress relaxation during annealing of boron nitride films[J]. Thin Solid Films, 2001, 389(1/2): 173-179.
[60] [60] MATSUMOTO S, ZHANG W J. High-rate deposition of high-quality, thick cubic boron nitride films by bias-assisted DC jet plasma chemical vapor deposition[J]. Japanese Journal of Applied Physics, 2000, 39(Part 2, No. 5B): L442-L444.
[61] [61] ZHAO Y, GAO W, XU B, et al. Thick c-BN films deposited by radio frequency magnetron sputtering in argon/nitrogen gas mixture with additional hydrogen gas[J]. Chinese Physics B, 2016, 25(10): 106801.
[62] [62] PASCALLON J, STAMBOULI V, ILIAS S, et al. Microstructure of c-BN thin films deposited on diamond films[J]. Diamond and Related Materials, 1999, 8(2/3/4/5): 325-330.
[63] [63] ZHANG W J, BELLO I, LIFSHITZ Y, et al. Thick and adherent cubic boron nitride films grown on diamond interlayers by fluorine-assisted chemical vapor deposition[J]. Applied Physics Letters, 2004, 85(8): 1344-1346.
[64] [64] LEUNG K M, LI H Q, ZOU Y S, et al. Structural analysis of cubic boron nitride films by ultraviolet Raman spectroscopy[J]. Applied Physics Letters, 2006, 88(24): 241922.
[65] [65] YIN H, ZIEMANN P. In situ Si doping of heteroepitaxially grown c-BN thin films at different temperatures[J]. RSC Advances, 2015, 5(48): 38170-38175.
[67] [67] ZHANG C Y, ZHONG X L, WANG J B, et al. Room-temperature growth of cubic nitride boron film by RF plasma enhanced pulsed laser deposition[J]. Chemical Physics Letters, 2003, 370(3/4): 522-527.
[70] [70] TIAN S, XU F, YE P, et al. Deposition of cubic boron nitride films by anode layer linear ion source assisted radio frequency magnetron sputtering[J]. Thin Solid Films, 2018, 653: 13-18.
[71] [71] NOSE K, YANG H S, KAMBARA M, et al. Effects of time-dependent substrate biasing and gas composition on the nucleation of cubic boron nitride thin films[J]. Diamond and Related Materials, 2010, 19(11): 1366-1370.
[72] [72] NAKAKUMA T, TEII K, MATSUMOTO S. Lowering of the substrate bias voltage for deposition of cubic boron nitride in microwave plasma[J]. IEEE Transactions on Plasma Science, 2019, 47(2): 1205-1209.
[74] [74] CHOI Y H, HUH J Y, BAIK Y J. Nucleation retardation of cubic boron nitride films caused by the addition of oxygen in argon-cnitrogen sputtering gas[J]. Diamond and Related Materials, 2021, 120: 108694.
[75] [75] LI J, DU Y H, ZHANG M, et al. The effects of fluorination and hydrogenation on the physical properties of two-dimensional (111)-oriented cubic boron nitride nanosheets[J]. Thin Solid Films, 2021, 718: 138484.
[76] [76] DAVIS C A. A simple model for the formation of compressive stress in thin films by ion bombardment[J]. Thin Solid Films, 1993, 226(1): 30-34.
[77] [77] WEISSMANTEL C, BEWILOGUA K, DIETRICH D, et al. Structure and properties of quasi-amorphous films prepared by ion beam techniques[J]. Thin Solid Films, 1980, 72(1): 19-32.
[78] [78] REINKE S, KUHR M, KULISCH W. Mechanisms in ion induced c-BN growth[J]. Diamond and Related Materials, 1994, 3(4/5/6): 341-345.
[79] [79] LIFSHITZ Y, KASI S R, RABALAIS J W, et al. Subplantation model for film growth from hyperthermal species[J]. Physical Review B, Condensed Matter, 1990, 41(15): 10468-10480.
[80] [80] HAHN J, RICHTER F, PINTASKE R, et al. Formation of c-BN thin films under reduced ion impact[J]. Surface and Coatings Technology, 1997, 92(1/2): 129-134.
[81] [81] ROBERTSON J. Deposition mechanism of cubic boron nitride[J]. Diamond and Related Materials, 1996, 5(3/4/5): 519-524.
[82] [82] LU M, BOUSETTA A, BENSAOULA A, et al. Electrical properties of boron nitride thin films grown by neutralized nitrogen ion assisted vapor deposition[J]. Applied Physics Letters, 1996, 68(5): 622-624.
[83] [83] SZMIDT J, WERBOWY A, JARZEBOWSKI L, et al. Effect of annealing on the structure and electrical properties of sulfur-doped amorphous c-BN layers[J]. Journal of Materials Science, 1996, 31(10): 2609-2613.
[84] [84] NOSE K, OBA H, YOSHIDA T. Electric conductivity of boron nitride thin films enhanced by in situ doping of zinc[J]. Applied Physics Letters, 2006, 89(11): 112124.
[85] [85] YIN H, ZIEMANN P. Multiple delta doping of single crystal cubic boron nitride films heteroepitaxially grown on (001)diamonds[J]. Applied Physics Letters, 2014, 104(25): 252111.
[86] [86] HAQUE A, NARAYAN J. Tunable n-type conductivity and transport properties of cubic boron nitride via carbon doping[J]. ACS Applied Electronic Materials, 2021, 3(3): 1359-1367.
[88] [88] MATHIYALAGAN S, ROSSETTI M, BJRKLUND S, et al. High velocity air fuel (HVAF) spraying of nickel phosphorus-coated cubic-boron nitride powders for realizing high-performance tribological coatings[J]. Journal of Materials Research and Technology, 2022, 18: 59-74.
[89] [89] LIEW W Y H, YUAN S, NGOI B K A. Evaluation of machining performance of STAVAX with PCBN tools[J]. The International Journal of Advanced Manufacturing Technology, 2004, 23(1/2): 11-19.
[90] [90] WENTORF R H, DEVRIES R C, BUNDY F P. Sintered superhard materials[J]. Science, 1980, 208(4446): 873-880.
[91] [91] HALL E O. The deformation and ageing of mild steel: iii discussion of results[J]. Proceedings of the Physical Society Section B, 1951, 64(9): 747-753.
[92] [92] PETCH N J. The cleavage strength of polycrystals[J]. J Iron Steel InstInst, 1953, 174(19): 25-28.
[93] [93] DUBROVINSKAIA N, SOLOZHENKO V L, MIYAJIMA N, et al. Superhard nanocomposite of dense polymorphs of boron nitride: noncarbon material has reached diamond hardness[J]. Applied Physics Letters, 2007, 90(10): 101912.
[94] [94] SOLOZHENKO V L, KURAKEVYCH O O, LE GODEC Y. Creation of nanostuctures by extreme conditions: high-pressure synthesis of ultrahard nanocrystalline cubic boron nitride[J]. Advanced Materials, 2012, 24(12): 1540-1544.
[95] [95] TIAN Y, XU B, YU D, et al. Ultrahard nanotwinned cubic boron nitride[J]. Nature, 2013, 493(7432): 385-388.
[96] [96] LIU G D, KOU Z L, YAN X Z, et al. Submicron cubic boron nitride as hard as diamond[J]. Applied Physics Letters, 2015, 106(12): 121901.
[97] [97] RICHTER F, HERRMANN M, MOLNAR F, et al. Substrate influence in Young's modulus determination of thin films by indentation methods: cubic boron nitride as an example[J]. Surface and Coatings Technology, 2006, 201(6): 3577-3587.
[98] [98] DEYNEKA-DUPRIEZ N, HERR U, FECHT H J, et al. Mechanical and tribological properties of epitaxial cubic boron nitride thin films grown on diamond[J]. Advanced Engineering Materials, 2008, 10(5): 482-487.
[99] [99] ZOYA Z A, KRISHNAMURTHY R. The performance of cBN tools in the machining of titanium alloys[J]. Journal of Materials Processing Technology, 2000, 100(1/2/3): 80-86.
[100] [100] DOGRA M, SHARMA V S, SACHDEVA A, et al. Tool wear, chip formation and workpiece surface issues in cBN hard turning: a review[J]. International Journal of Precision Engineering and Manufacturing, 2010, 11(2): 341-358.
[101] [101] OKADA M, HOSOKAWA A, TANAKA R, et al. Cutting performance of PVD-coated carbide and cBN tools in hardmilling[J]. International Journal of Machine Tools and Manufacture, 2011, 51(2): 127-132.
[102] [102] CHRENKO R M. Ultraviolet and infrared spectra of cubic boron nitride[J]. Solid State Communications, 1974, 14(6): 511-515.
[103] [103] MIYATA N, MORIKI K, MISHIMA O, et al. Optical constants of cubic boron nitride[J]. Physical Review B, Condensed Matter, 1989, 40(17): 12028-12029.
[104] [104] EVANS D A, MCGLYNN A G, TOWLSON B M, et al. Determination of the optical band-gap energy of cubic and hexagonal boron nitride using luminescence excitation spectroscopy[J]. Journal of Physics: Condensed Matter, 2008, 20(7): 075233.
[105] [105] ZHANG J, AN L L, ZHANG B, et al. Two dimensional cubic boron nitride nanosheets converted from hexagonal boron nitride bilayers: electrical conductivity, magnetism and visible absorption properties[J]. Chinese Journal of Physics, 2020, 66: 534-542.
[106] [106] REN C, CHEN Z G, JIA G, et al. Absorption related to electrochromism in cubic boron nitride single crystals[J]. Chinese Physics Letters, 2009, 26(6): 067804.
[107] [107] CHEN Z G, JIA G, DOU Q P, et al. Studies of the second-order nonlinear optical properties of cubic boron nitride[J]. Applied Physics B, 2007, 88(4): 569-573.
[108] [108] XIONG X C, JIANG C, XIE Q. Broadband transmission properties of cBN-Si interfaces[J]. IEEE Photonics Journal, 2021, 13(3): 1-10.
[109] [109] SHIPILO V B, SHISHONOK E M, OLEKHNOVICH A I, et al. Influence of high pressure on cathodoluminescence of cubic boron nitride[J]. Physica Status Solidi (a), 1988, 108(1): 431-436.
[110] [110] ERASMUS R M, COMINS J D, FISH M L. Raman and photoluminescence spectra of indented cubic boron nitride and polycrystalline cubic boron nitride[J]. Diamond and Related Materials, 2000, 9(3/4/5/6): 600-604.
[111] [111] SHISHONOK E M, STEEDS J W. Near-threshold creation of optical centres in electron irradiated cubic boron nitride[J]. Diamond and Related Materials, 2002, 11(10): 1774-1780.
[112] [112] TAYLOR C A, BROWN S W, SUBRAMANIAM V, et al. Observation of near-band-gap luminescence from boron nitride films[J]. Applied Physics Letters, 1994, 65(10): 1251-1253.
[113] [113] ZHANG W J, KANDA H, MATSUMOTO S. Cathodoluminescence of cubic boron nitride films deposited by chemical vapor deposition[J]. Applied Physics Letters, 2002, 81(18): 3356-3358.
[114] [114] YU J, ZHENG Z, ONG H C, et al. Thermal stability of cubic boron nitride films deposited by chemical vapor deposition[J]. The Journal of Physical Chemistry B, 2006, 110(42): 21073-21076.
[115] [115] SHISHONOK E M, PHILIPP A R, SHISHONOK N A, et al. Luminescence in cubic boron nitride doped by rare-earth impurity[J]. Physica Status Solidi (b), 2005, 242(8): 1700-1704.
[116] [116] SHISHONOK E M, TANIGUCHI T, SEKIGUCHI T. Luminescence investigations of cubic boron nitride doped with beryllium[J]. Physics of the Solid State, 2007, 49(10): 1884-1890.
[117] [117] SHISHONOK E M, LEONCHIK S V, STEEDS J W, et al. Strong ultraviolet luminescence from cerium- and gadolinium-doped cubic boron nitride[J]. Diamond and Related Materials, 2007, 16(8): 1602-1607.
[118] [118] SHISHONOK E M, LEONCHIK S V, STEEDS J W. Luminescence from europium, europium-chromium, erbium, samarium and terbium-activated powder, ceramic and polycrystalline cubic boron nitride[J]. Physica Status Solidi (b), 2007, 244(6): 2172-2179.
[119] [119] VETTER U, TANIGUCHI T, WAHL U, et al. Lanthanide doped cubic boron nitride[J]. MRS Proceedings, 2002, 744(1): M8.38.
[120] [120] ORELLANA W, CHACHAM H. Atomic geometry and energetics of vacancies and antisites in cubic boron nitride[J]. Applied Physics Letters, 1999, 74(20): 2984-2986.
[121] [121] TURIANSKY M E, WICKRAMARATNE D, LYONS J L, et al. Prospects for n-type conductivity in cubic boron nitride[J]. Applied Physics Letters, 2021, 119(16): 162105.
[122] [122] YIN H, BOYEN H G, ZIEMANN P, et al. Purity of epitaxial cubic boron nitride films on (001) diamond: a prerequisite for their doping[J]. Diamond and Related Materials, 2008, 17(3): 276-282.
[123] [123] BIAN G D, YUAN H, ZHANG N, et al. Neutral oxygen-vacancy defect in cubic boron nitride: a plausible qubit candidate[J]. Applied Physics Letters, 2019, 114(10): 102105.
[125] [125] SUGINO T, TANIOKA K, KAWASAKI S, et al. Electron emission from nanocrystalline boron nitride films synthesized by plasma-assisted chemical vapor deposition[J]. Diamond and Related Materials, 1998, 7(2/3/4/5): 632-635.
[126] [126] BUSTA H H, PRYOR R W. Electron emission from a laser ablated and laser annealed BN thin film emitter[J]. Journal of Applied Physics, 1997, 82(10): 5148-5153.
[127] [127] YIN H, PONGRAC I, ZIEMANN P. Electronic transport in heavily Si doped cubic boron nitride films epitaxially grown on diamond(001)[J]. Journal of Applied Physics, 2008, 104(2): 023703.
[128] [128] KOJIMA K, NOSE K, KAMBARA M, et al. Effects of magnesium doping on growth and electric conductivity of nanocrystalline cubic boron nitride thin films[J]. Journal of Physics D: Applied Physics, 2009, 42(5): 055304.
[129] [129] TANIGUCHI T, KOIZUMI S, WATANABE K, et al. High pressure synthesis of UV-light emitting cubic boron nitride single crystals[J]. Diamond and Related Materials, 2003, 12(3/4/5/6/7): 1098-1102.
[130] [130] HIRAMA K, TANIYASU Y, YAMAMOTO H, et al. Control of n-type electrical conductivity for cubic boron nitride (c-BN) epitaxial layers by Si doping[J]. Applied Physics Letters, 2020, 116(16): 162104.
[131] [131] MISHIMA O, TANAKA J, YAMAOKA S, et al. High-temperature cubic boron nitride p-n junction diode made at high pressure[J]. Science, 1987, 238(4824): 181-183.
[132] [132] LI Y B, ZHONG J W, ZHOU L M, et al. Deep ultraviolet photodetector based on sulphur-doped cubic boron nitride thin film[J]. Materials Science Forum, 2016, 879: 1117-1122.
Get Citation
Copy Citation Text
LIU Caiyun, GAO Wei, YIN Hong. Research Progress of Cubic Boron Nitride[J]. Journal of Synthetic Crystals, 2022, 51(5): 781
Category:
Received: Mar. 18, 2022
Accepted: --
Published Online: Jul. 7, 2022
The Author Email: Caiyun LIU (caiyun18@mails.jlu.edu.cn)
CSTR:32186.14.