Journal of Quantum Optics, Volume. 28, Issue 4, 333(2022)
Numerically Study of Vortices Generated by the Interference of Dipolar Bose-Einstein Condensates
[1] [1] STUHLER J, GRIESMAIER A, KOCH T, et al. Observation of Dipole-Dipole Interaction in a Degenerate Quantum Gas[J]. Phys Rev Lett, 2005, 95:150406. DOI: 10.1103/PhysRevLett.95.150406.
[2] [2] GRIESMAIER A, WERNER J, HENSLER S, et al. Bose-Einstein Condensation of Chromium[J]. Phys Rev Lett, 2005, 94:160401. DOI: 10.1103/PhysRevLett.94.160401.
[3] [3] MCCLELLAND J J, HANSSEN J L. Laser Cooling without Repumping: A Magneto-Optical Trap for Erbium Atoms[J]. Phys Rev Lett, 2006, 96:143005. DOI: 10.1103/PhysRevLett.96.143005.
[4] [4] AIKAWA K, FRISCH A, MARK M, et al. Bose-Einstein Condensation of Erbium[J]. Phys Rev Lett, 2012, 108:210401. DOI: 10.1103/PhysRevLett.108.210401.
[5] [5] LU M W, YOUN S H, LEV B L. Trapping Ultracold Dysprosium: A Highly Magnetic Gas for Dipolar Physics[J]. Phys Rev Lett, 2010, 104:063001. DOI: 10.1103/PhysRevLett.104.063001.
[6] [6] LU M W, BURDICK N Q, YOUN S H, et al. Strongly Dipolar Bose-Einstein Condensate of Dysprosium[J]. Phys Rev Lett, 2011, 107:190401. DOI: 10.1103/PhysRevLett.107.190401.
[7] [7] SASAKI K, SUZUKI N, SAITO H. Dynamics of bubbles in a two-component Bose-Einstein condensate[J]. Phys Rev A, 2010, 83:033602. DOI: 10.1103/PhysRevA.83.033602.
[8] [8] QI R, YU X L, LI Z B, et al. Non-Abelian Josephson Effect between Two F=2 Spinor Bose-Einstein Condensates in Double Optical Traps[J]. Phys Rev Lett, 2009, 102:185301. DOI: 10.1103/PhysRevLett.102.185301.
[9] [9] LIANG Z X, ZHANG Z D, LIU W M. Dynamics of a Bright Soliton in Bose-Einstein Condensates with Time-Dependent Atomic Scattering Length in an Expulsive Parabolic Potential[J]. Phys Rev Lett, 2005, 94:050402. DOI: 10.1103/PhysRevLett.94.050402.
[10] [10] JI A C, SUN Q, XIE X C, et al. Josephson Effect for Photons in Two Weakly Linked Microcavities[J]. Phys Rev Lett, 2009, 102:023602. DOI: 10.1103/PhysRevLett.102.023602.
[11] [11] YI S, YOU L. Trapped atomic condensates with anisotropic interactions[J]. Phys Rev A, 2000, 61:041604. DOI: 10.1103/PhysRevA.61.041604.
[12] [12] MARINESCU M, YOU L. Controlling Atom-Atom Interaction at Ultralow Temperatures by dc Electric Fields[J]. Phys Rev Lett, 1998, 81:4596. DOI: 10.1103/PhysRevLett.81.4596.
[13] [13] KAWAGUCHI Y, SAITO H, UEDA M. Spontaneous Circulation in Ground-State Spinor Dipolar Bose-Einstein Condensates[J]. Phys Rev Lett, 2006, 97:130404. DOI: 10.1103/PhysRevLett.97.130404.
[14] [14] TAKAHASHI M, GHOSH S, MIZUSHIMA T, et al. Spinor Dipolar Bose-Einstein Condensates: Classical Spin Approach[J]. Phys Rev Lett, 2007, 98:260403. DOI: 10.1103/PhysRevLett.98.260403.
[15] [15] KAWAGUCHI Y, SAITO H, UEDA M. Can Spinor Dipolar Effects Be Observed in Bose-Einstein Condensates[J]. Phys Rev Lett, 2007, 98:110406. DOI: 10.1103/PhysRevLett.98.110406.
[16] [16] WU B, NIU Q. Nonlinear Landau-Zener tunneling[J]. Phys Rev A, 2000, 61:023402. DOI: 10.1103/PhysRevA.61.023402.
[17] [17] LIU J, WU B, NIU Q. Nonlinear Evolution of Quantum States in the Adiabatic Regime[J]. Phys Rev Lett, 2003, 90:170404. DOI: 10.1103/PhysRevLett.90.170404.
[18] [18] SHI T, ZOU S H, HU H, et al. Ultracold Fermi Gases with Resonant Dipole-Dipole Interaction[J]. Phys Rev Lett, 2013, 110:045301. DOI: 10.1103/PhysRevLett.110.045301.
[19] [19] ANDREWS M R, TOWNSEND C G, MIESNER H J, et al. Observation of interference between two bose condensates[J]. Science, 1997, 275:637. DOI: 10.1126/science.275.5300.637.
[20] [20] HOSTON W, YOU L. Interference of two condensates[J].Phys Rev A, 1996, 53:4254-4256. DOI: 10.1103/PhysRevA.53.4254.
[21] [21] HALL D S, MATTHEWS M R, WIEMAN C E, et al. Measurements of relative phase in two-component Bose-Einstein condensates[J]. Phys Rev Lett, 1998, 81:1543. DOI: 10.1103/PhysRevLett.81.1543.
[22] [22] BURCHIANTI A, D’ERRICO C, MARCONI L, et al. Effect of interactions in the interference pattern of Bose-Einstein condensates[J]. Phys Rev A, 2020, 102:043314. DOI: 10.1103/PhysRevA.102.043314.
[23] [23] YANG G, GUO J, ZHANG S. Influence of the dipole-dipole interaction on the interference between Bose-Einstein condensates[J]. Int J Mod Phys B, 2019, 33:1950048. DOI: 10.1142/S0217979219500486.
[24] [24] ZHAO Q, GU Q. Vortices in dipolar Bose-Einstein condensates in synthetic magnetic field[J]. Chinese Physics B, 2016, 25:016702. DOI: 10.1088/1674-1056/25/1/016702.
[25] [25] GIOVANAZZI S, GORLITZ A, PFAU T. Tuning the dipolar interaction in quantum gases[J]. Phys Rev Lett, 2002, 89:130401. DOI: 10.1103/PhysRevLett.89.130401.
[26] [26] BAO W, CAI Y, WANG H. Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates[J]. J Comput Phys, 2010, 229:7874. DOI: 10.1016/j.jcp.2010.07.001.
[27] [27] CREMON J C, BRUUN G M, REIMANN S M. Tunable Wigner states with dipolar atoms and molecules[J]. Phys Rev Lett, 2010, 105:255301. DOI: 10.1103/PhysRevLett.105.255301.
[28] [28] CARRETERO-González R, WHITAKER N, KEVREKIDIS P G, et al. Vortex structures formed by the interference of sliced condensates[J]. Phys Rev A, 2008, 77:023605. DOI: 10.1103/PhysRevA.77.023605.
[29] [29] PETROV D S, HOLZMANN M, SHLYAPNIKOV G V. Bose-Einstein Condensation in Quasi-2D Trapped Gases[J]. Phys Rev Lett, 2000, 84:2551. DOI: 10.1103/PhysRevLett.84.2551.
[30] [30] PETROV D S, SHLYAPNIKOV G V. Interatomic collisions in a tightly confined Bose gas[J]. Phys Rev A, 2001, 64:012706. DOI: 10.1103/PhysRevA.64.012706.
[31] [31] TICKNOR C, WILSON R M, BOHN J L, Anisotropic Superfluidity in a Dipolar Bose Gas[J]. Phys Rev Lett, 2011, 106:065301. DOI: 10.1103/PhysRevLett.106.065301.
[32] [32] ZHANG X F, HAN W, WEN L, et al. Two-component dipolar Bose-Einstein condensate in concentrically coupled annular traps[J]. Sci Rep, 2015, 5:8684. DOI: 10.1038/srep08684.
[33] [33] ADHIKARI S K. Dipolar Bose-Einstein condensate in a ring or in a shell[J]. Phys Rev A, 2012, 85:053631. DOI: 10.1103/PhysRevA.85.053631.
[34] [34] SUBRAMANIYAN S. Vortex formation and hidden vortices in dipolar Bose-Einstein condensates[J]. Physics Letters A, 2017, 36:381. DOI: 10.1016/j.physleta.2017.08.006.
[35] [35] KUMAR R K, LUIS E, YOUNG S, et al. Fortran and C programs for the time-dependent dipolar Gross-Pitaevskii equation in an anisotropic trap[J]. Computer Physics Communications, 2015, 195:117-128. DOI: 10.1016/j.cpc.2015.03.024.
[36] [36] PEDRI P, SANTOS L. Two-Dimensional Bright Solitons in Dipolar Bose-Einstein Condensates[J]. Phys Rev Lett, 2005, 95:200404. DOI: 10.1103/PhysRevLett.95.200404.
Get Citation
Copy Citation Text
YANG Guo-quan, JIN Jing-jing, ZHANG Su-ying. Numerically Study of Vortices Generated by the Interference of Dipolar Bose-Einstein Condensates[J]. Journal of Quantum Optics, 2022, 28(4): 333
Category:
Received: Nov. 11, 2021
Accepted: --
Published Online: Mar. 5, 2023
The Author Email: ZHANG Su-ying (zhangsy@sxu.edu.cn)