Journal of the Chinese Ceramic Society, Volume. 51, Issue 1, 270(2023)

Research Progress of Blast Furnace Slag Based Photocatalytic Materials in Wastewater Treatment

LI Mingyang1,2, ZHANG Chen1, LIANG Rui1, LONG Hongming1,2, and GAO Xiangpeng1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(39)

    [5] [5] GUO Y, QI P, LIU Y. A review on advanced treatment of pharmaceutical wastewater//IOP Conference Series: Earth and Environmental Science, 2017 International Conference on Environmental and Energy Engineering (IC3E 2017), Suzhou, 2017: 012025.

    [14] [14] YANG X, SUN H, LI G, et al. Fouling of TiO2 induced by natural organic matters during photocatalytic water treatment: Mechanisms and regeneration strategy[J]. Appl Catal B: Environmental, 2021, 294: 120252.

    [15] [15] SALEHIAN S, MEHDIPOUR M H, Fotovat F, et al. Photocatalytic TiO2@ MIL-88A (Fe)/polyacrylonitrile mixed matrix membranes: Characterization, anti-fouling properties, and performance on the removal of natural organic matter[J]. Chemosphere, 2022, 302: 134893.

    [16] [16] HAN M, ZHU S, LU S, et al. Recent progress on the photocatalysis of carbon dots: Classification, mechanism and applications[J]. Nano Today, 2018, 19: 201-218.

    [17] [17] SUN M, ZHOU Y, YU T. Synthesis of g-C3N4/NiO-carbon microsphere composites for Co-reduction of CO2 by photocatalytic hydrogen production from water decomposition[J]. J Cleaner Prod, 2022, 357: 131801.

    [18] [18] LU?VANO-HIP?LITO E, TORRES-MART?NEZ L M, FERN?NDEZ-TRUJILLO A. Ternary ZnO/CuO/Zeolite composite obtained from volcanic ash for photocatalytic CO2 reduction and H2O decomposition[J]. J Phys Chem Solids, 2021, 151: 109917.

    [19] [19] LI X, WANG W, DONG F, et al. Recent advances in noncontact external-field-assisted photocatalysis: From fundamentals to applications[J]. ACS Catal, 2021, 11(8): 4739-4769.

    [20] [20] LIU Z, YU X, LI L. Piezopotential augmented photo-and photoelectro-catalysis with a built-in electric field[J]. Chin J Catal, 2020, 41(4): 534-549.

    [23] [23] MIYOSHI A, KUWABARA A, MAEDA K. Effects of Nitrogen/Fluorine Codoping on Photocatalytic Rutile TiO2 Crystal Studied by First-Principles Calculations[J]. Inorg Chem, 2021, 60(4): 2381-2389.

    [25] [25] KHAMRAI J, DAS S, SAVATEEV A, et al. Mizoroki-Heck type reactions and synthesis of 1, 4-dicarbonyl compounds by heterogeneous organic semiconductor photocatalysis[J]. Green Chem, 2021, 23(5): 2017-2024.

    [26] [26] XIONG J, LIANG Y, CHENG H, et al. Preparation and Photocatalytic Properties of a Bagasse Cellulose-Supported Nano-TiO2 Photocatalytic-Coupled Microbial Carrier[J]. Materials, 2020, 13(7): 1645.

    [27] [27] LI N, TU Y, WANG K, et al. Construction of a Photo-thermal-magnetic coupling reaction system for enhanced CO2 reduction to CH4[J]. Chem Eng J, 2021, 421: 129940.

    [28] [28] ZHENG L, WANG W, GAO X. Solidification and immobilization of MSWI fly ash through aluminate geopolymerization: Based on partial charge model analysis[J]. Waste Manage, 2016, 58: 270-279.

    [30] [30] ZHANG Y J, ZHANG L, ZHANG K, et al. Synthesis of eco-friendly CaWO4/CSH nanocomposite and photocatalytic degradation of dyeing pollutant[J]. Integr Ferroelectr, 2017, 181(1): 113-122.

    [31] [31] ZHANG Y J, HE P Y, YANG M Y, et al. Renewable conversion of slag to graphene geopolymer for H2 production and wastewater treatment[J]. Catal Today, 2020, 355: 325-332.

    [32] [32] JI Z, ZHANG Y, QI X, et al. Low-cost and facile fabrication of recyclable and reusable waste-based geopolymer for visible-light photocatalysis degradation[J]. J Cleaner Prod, 2021, 310: 127434.

    [33] [33] DHMEES A S, RASHAD A M, ELIWA A A, et al. Preparation and characterization of nano SiO2@CeO2 extracted from blast furnace slag and uranium extraction waste for wastewater treatment[J]. Ceram Int, 2019, 45(6): 7309-7317.

    [34] [34] AMDEHA E, MOHAMED R S, DHMEES A S. Sonochemical Assisted Preparation of ZnS-ZnO/MCM-41 based on Blast Furnace Slag and Electric Arc Furnace Dust for Cr (VI) Photoreduction[J]. Ceram Int, 2021, 47(16): 23014-23027.

    [35] [35] SHI J, KUWAHARA Y, AN T, et al. The fabrication of TiO2 supported on slag-made calcium silicate as low-cost photocatalyst with high adsorption ability for the degradation of dye pollutants in water[J]. Catal Today, 2017, 281: 21-28.

    [37] [37] ZHANG H, GANG C, Li Y, et al. Electronic structure and photocatalytic properties of copper-doped CaTiO3[J]. Int J Hydrogen Energy, 2010, 35(7): 2713-2716.

    [38] [38] LITTER M I. Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems[J], Appli catal B: Environmental, 1999, 23(2/3): 89-114.

    [39] [39] EB A, EM A, RS A, et al. Aniline mineralization by AOP's: Anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes[J]. Appl Catal B, 1998, 16(1): 31-42

    [44] [44] ZHOU J, HOU H, LIN M, et al. Photocatalytic performance of SiO2-TiO2 composite via F-assisted restructure of Ti-bearing slag[J]. Desalin Water Treat, 2018, 132(NOV.): 157-166.

    [45] [45] ZHOU H, AI J, GAO H, et al. Removal of arsenic in groundwater using Slag based calcined layered double hydroxides (CLDHs) with dual functions of adsorption and photo-catalysis[J]. Colloids Surf A, 2020, 604: 125300.

    [46] [46] SONG N, CAI Y, SUN L, et al. Efficient Recycling Blast Furnace Slag by Constructing Ti-Embedded Layered Double Hydroxide as Visible-Light-Driven Photocatalyst[J]. Materials, 2022, 15(4): 1514.

    [47] [47] SONG Z, GAO H, LIAO G, et al. A novel slag-based Ce/TiO2@ LDH catalyst for visible light driven degradation of tetracycline: performance and mechanism[J]. J Alloys Compd, 2022, 901: 163525.

    [48] [48] DAI G, HUANG B, YU J. Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/ TiO2 Nanotube Arrays[J]. J Phy Chem C, 2009, 113(37): 16394-16401.

    [49] [49] ZANGENEH H, ZINATIZADEH A, HABIBI M, et al. Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review[J]. J Ind Eng Chem, 2015, 26: 1-36.

    [50] [50] YUAN J, WANG E, CHEN Y, et al. Doping mode, band structure and photocatalytic mechanism of B-N-codoped TiO2[J]. Appl Surf Sci, 2011, 257(16): 7335-7342.

    [51] [51] WEI X A, XJ A, XI L A, et al. Adsorption of organic dyes from wastewater by metal-doped porous carbon materials - ScienceDirect[J]. J Cleaner Prod, 2021, 284: 124773.

    [57] [57] JIANG D, XU Y, HOU B. Synthesis of visible light-activated TiO2 photocatalyst via surface organic modification[J]. J Solid State Chem. 2007, 180(5): 1787-1791.

    [58] [58] PATTANAYAK P, SINGH P, BANSAL N K, et al. Recent Progress in Perovskite Transition Metal Oxide-based Photocatalyst and Photoelectrode Materials for Solar-Driven Water Splitting[J]. J Environ Chem Eng, 2022: 108429.

    [63] [63] YOU H, SUN H, LI Y, et al. Ceramics from Ti-extraction blast furnace slag and their crystalline phase, microstructure, and photocatalytic performance[J]. Front Mater, 2021, 8: 652009.

    [64] [64] WANG Y, SU S, LIU B, et al. Study on the Degradation Behavior of Organic Humic Acid from the Wastewater by Refractory High-Titanium Slag After Metallurgical Transformation, Characterization of Minerals, Metals, and Materials 2022: Springer, Cham, 2022: 71-80.

    [65] [65] SHIVAKUMARA C, SARAF R, BEHERA S, et al. Scheelite-type MWO4 (M= Ca, Sr, and Ba) nanophosphors: Facile synthesis, structural characterization, photoluminescence, and photocatalytic properties[J]. Mater Res Bull, 2015, 61: 422-432.

    [66] [66] KUBUROVIC N D, GOLUBOVIC A, TODOROVIC Z, et al. Photocatalytic degradation of wastewater polluted by MTBE using titanium-dioxide and doped titanium-dioxide[C]. The 4th Lasme/wseas Inter Confer Water Reso, Hydraulics & Hydrology (WHH'09), 2009: 19-24

    [67] [67] WANG L, ZHANG C, GAO F, et al. Algae decorated TiO2/Ag hybrid nanofiber membrane with enhanced photocatalytic activity for Cr (VI) removal under visible light[J]. Chem Eng J, 2017, 314: 622-630.

    [69] [69] NEZAMZADEH-EJHIEH A, KHORSANDI M. Heterogeneous photodecolorization of Eriochrome Black T using Ni/P zeolite catalyst[J]. Desalination, 2010, 262(1-3): 79-85.

    [70] [70] CHEN G, LIN C, CHEN L, et al. Effect of size-fractionation dissolved organic matter on the mobility of prometryne in soil[J]. Chemosphere, 2010, 79(11): 1046-1055.

    Tools

    Get Citation

    Copy Citation Text

    LI Mingyang, ZHANG Chen, LIANG Rui, LONG Hongming, GAO Xiangpeng. Research Progress of Blast Furnace Slag Based Photocatalytic Materials in Wastewater Treatment[J]. Journal of the Chinese Ceramic Society, 2023, 51(1): 270

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 7, 2022

    Accepted: --

    Published Online: Mar. 10, 2023

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20220642

    Topics