International Journal of Extreme Manufacturing, Volume. 7, Issue 4, 45503(2025)
Micro/nano-manufacturing of bioinspired blood-repellent surfaces for extreme application in surgical electrodes
[1] [1] Spanikova G, Spanik P, Frivaldsky M, Pavelek M, Bassetto F and Vindigni V. 2017. Electric model of liver tissue for investigation of electrosurgical impacts.Electr. Eng.99, 1185–1194.
[2] [2] Malis L I. 1996. Electrosurgery.J. Neurosurg.85, 970–975.
[3] [3] Lu L S, Li K K, Xie Y X, Wan Z P, Ding H W, Zhang Z H and Tang Y. 2020. Research status and development trend of desorption surgical electromes.J. Mech. Eng.56, 175–186.
[4] [4] Karaki W, Akyildiz A, De S and Borca-Tasciuc D A. 2017. Energy dissipation inex vivoporcine liver during electrosurgery.IEEE Trans. Biomed. Eng.64, 1211–1217.
[5] [5] Ou K L, Weng C C, Sugiatno E, Ruslin M, Lin Y H and Cheng H Y. 2016. Effect of nanostructured thin film on minimally invasive surgery devices applications: characterization, cell cytotoxicity evaluation and an animal study in rat.Surg. Endosc.30, 3035–3049.
[6] [6] Chen H W, Zhang Y, Zhang L W, Ding X L and Zhang D Y. 2021. Applications of bioinspired approaches and challenges in medical devices.Bio-Des. Manuf.4, 146–148.
[7] [7] Mikami T, Takahashi A, Hashi K, Gasa S and Houkin K. 2004. Performance of bipolar forceps during coagulation and its dependence on the tip material: a quantitative experimental assay: technical note.J. Neurosurg.100, 133–138.
[8] [8] Kang S K, Kim P Y, Koo I G, Kim H Y, Jung J C, Choi M Y, Lee J K and Collins G J. 2012. Non-stick polymer coatings for energy-based surgical devices employed in vessel sealing.Plasma Process. Polym.9, 446–452.
[9] [9] Park J Y, Tenjimbayashi M, Muto J and Shiratori S. 2018. Antiadhesion function between a biological surface and a metallic device interface at high temperature by wettability control.ACS Biomater. Sci. Eng.4, 1891–1899.
[10] [10] eviker N, Keskil S and Baykaner K. 1998. A new coated bipolar coagulator: technical note.Acta Neurochir.140, 619–620.
[11] [11] Wan J F, Hao R F, Long Y J, Zheng L, Zheng J and Zhou Z R. 2018. Research on the variations of the incision efficiency and anti-sticking performance of ptfe-coated electrode with operation time.J. Mech. Eng.54, 2–7.
[12] [12] Li K K, Xie Y X, Tang B, Ding H W, Mei X K, Yu M, Li C B and Lu L S. 2023. Dynamic behavior of biological droplets on heated, superhydrophobic microstructured surfaces.Surf. Interfaces39, 102984.
[13] [13] Li K K, Xie Y X, Tang B, Yu M, Ding H W, Li C B and Lu L S. 2022. Evolution of electro-induced blood plasma droplets on a superhydrophobic microstructured surface.Appl. Phys. Lett.121, 113701.
[14] [14] Li K K, Xie Y X, Yu M, Gao J, Tang B and Lu L S. 2023. Electrothermally excited plasma droplet evolution on the laser-patterned surface.Phys. Fluids35, 041902.
[15] [15] Li C, Yang Y, Yang L J and Shi Z. 2019. Biomimetic antiadhesive surface microstructures on electrosurgical blade fabricated by long-pulse laser inspired by pangolin scales.Micromachines10, 816.
[16] [16] Liu Z H, Wu F, Gu H, Feng J, Huang D Q, Zheng L J, Yao G, Chen Z H and Wang C Y. 2023. Adhesion failure and antiadhesion bionic structure optimization of surgical electrodes in soft tissue cutting.J. Manuf. Process.89, 444–457.
[17] [17] Han Z W, Fu J, Feng X M, Niu S C, Zhang J Q and Ren L Q. 2017. Bionic anti-adhesive electrode coupled with maize leaf microstructures and TiO2 coating.RSC Adv.7, 45287–45293.
[18] [18] Li K K, Lu L S, Chen H P, Jiang G X, Ding H W, Yu M and Xie Y X. 2023. Cutting performance of surgical electrodes by constructing bionic microstriped structures.Front. Mech. Eng.18, 12.
[19] [19] Chen R, Cao K, Wen Y W, Yang F, Wang J, Liu X and Shan B. 2024. Atomic layer deposition in advanced display technologies: from photoluminescence to encapsulation.Int. J. Extrem. Manuf.6, 022003.
[20] [20] Zhou C Y, Lu J C and Wang X S. 2020. Adhesion behavior of textured electrosurgical electrode in an electric cutting process.Coatings10, 596.
[21] [21] Zhang P F, Liu G, Zhang D Y and Chen H W. 2018. Liquidinfused surfaces on electrosurgical instruments with exceptional antiadhesion and low-damage performances.ACS Appl. Mater. Interfaces10, 33713–33720.
[22] [22] Lu J C, Wang X S, Huang Y K, Zhou C Y, Xu B and Fu Q Q. 2020. Fabrication and cutting performance of bionic micro-serrated scalpels based on the miscanthus leaves.Tribol. Int.145, 106162.
[23] [23] Li K K, Lu L S, Xie Y X, Yu M, Jiang G X, Kou J W and Gao J. 2023. Enhanced cutting performance of electrosurgical units by oil-infused laser-textured surfaces.Int. J. Mech. Sci.254, 108422.
[24] [24] Li K K, Xie Y X, Yang S, Ritasalo R, Mariam J, Yu M, Bi J M, Ding H W and Lu L S. 2023. Synergetic effects of nanoscale ALD–HfO2 coatings and bionic microstructures for antiadhesive surgical electrodes: improved cutting performance, antibacterial property, and biocompatibility.ACS Appl. Mater. Interfaces15, 43550–43562.
[25] [25] O’Hara J and Fang F Z. 2019. Advances in micro cutting tool design and fabrication.Int. J. Extrem. Manuf.1, 032003.
[26] [26] Chen J Y, Liu D H, Jin T Y and Qi Y Z. 2023. A novel bionic micro-textured tool with the function of directional cuttingfluid transport for cutting titanium alloy.J. Mater. Process. Technol.311, 117816.
[27] [27] Popescu M C, Ungureanu C, Buse E, Nastase F, Tucureanu V, Suchea M, Draga S and Popescu M A. 2019. Antibacterial efficiency of cellulose-based fibers covered with ZnO and Al2O3 by atomic layer deposition.Appl. Surf. Sci.481, 1287–1298.
[28] [28] Xu F M, Luo L, Xiong L and Liu Y. 2020. Microstructure and corrosion behavior of ALD Al2O3 film on AZ31 magnesium alloy with different surface roughness.J. Magnes. Alloy8, 480–492.
[29] [29] George S M. 2010. Atomic layer deposition: an overview.Chem. Rev.110, 111–131.
[30] [30] Jeong J, Laiwalla F, Lee J, Ritasalo R, Pudas M, Larson L, Leung V and Nurmikko A. 2019. Conformal hermetic sealing of wireless microelectronic implantable chiplets by multilayered atomic layer deposition (ALD).Adv. Funct. Mater.29, 1806440.
[31] [31] Szindler M, Szindler M, Basiaga M, oski W and Kaim P. 2021. Application of ALD thin films on the surface of the surgical scalpel blade.Coatings11, 1096.
[32] [32] Liu Y H and Li G J. 2012. A new method for producing “lotus effect” on a biomimetic shark skin.J. Colloid Interface Sci.388, 235–242.
[33] [33] Dogan G, Chiu F, Chen S U H, David M R T, Michalowski A, Schnzel M, Silber C, Schtz G, Grvent C and Keskinbora K. 2021. Micromachining of Al2O3 thin films via laser drilling and plasma etching for interfacing copper.Mater. Des.210, 110114.
[34] [34] Gentleman M M and Ruud J A. 2010. Role of hydroxyls in oxide wettability.Langmuir26, 1408–1411.
[35] [35] Chun D M, Ngo C V and Lee K M. 2016. Fast fabrication of superhydrophobic metallic surface using nanosecond laser texturing and low-temperature annealing.CIRP Ann.65, 519–522.
[36] [36] Jagdheesh R, Diaz M, Marimuthu S and Ocana J L. 2017. Robust fabrication of μ-patterns with tunable and durable wetting properties: hydrophilic to ultrahydrophobic via a vacuum process.J. Mater. Chem.A5, 7125–7136.
[37] [37] Cassie A B D and Baxter S. 1944. Wettability of porous surfaces.Trans. Faraday Soc.40, 546–551.
[38] [38] Zhao S Y, Yang X T, Xu Y Y, Weng Z Z, Liao L and Wang X L. 2022. A sprayable superhydrophobic dental protectant with photo-responsive anti-bacterial, acid-resistant, and anti-fouling functions.Nano Res.15, 5245–5255.
[39] [39] He Y C, Yin K, Wang L X, Wu T N, Chen Y and Arnusch C J. 2024. Femtosecond laser structured black superhydrophobic cork for efficient solar-driven cleanup of crude oil.Appl. Phys. Lett.124, 171601.
[40] [40] Ou K L, Chu J S, Hosseinkhani H, Chiou J F and Yu C H. 2014. Biomedical nanostructured coating for minimally invasive surgery devices applications: characterization, cell cytotoxicity evaluation and an animal study in rat.Surg. Endosc.28, 2174–2188.
[41] [41] Yang P Y, Yin K, Song X H, Wang L X, Deng Q W, Pei J Q, He Y C and Arnusch C J. 2024. Airflow triggered water film self-sculpturing on femtosecond laser-induced heterogeneously wetted micro/nanostructured surfaces.Nano Lett.24, 3133–3141.
[42] [42] Annarelli C C, Fornazero J, Cohen R, Bert J and Besse J L. 1999. Colloidal protein solutions as a new standard sensor for adhesive wettability measurements.J. Colloid Interface Sci.213, 386–394.
[43] [43] Sobac B and Brutin D. 2014. Desiccation of a sessile drop of blood: cracks, folds formation and delamination.Colloids Surf.A448, 34–44.
[44] [44] Zhang K T, Liu G, Zhao Z H, Zhang S B, Yang C J, Yang J J, Zhang L W and Chen H W. 2024. Liquid-infused bionic microstructures on high-frequency electrodes for enhanced spark effects and reduced tissue adhesion.Chem. Eng. J.485, 149907.
[45] [45] Matsugi K, Kuramoto H, Hatayama T and Yanagisawa O. 2003. Temperature distribution at steady state under constant current discharge in spark sintering process of Ti and Al2O3 powders.J. Mater. Process. Technol.134, 225–232.
[46] [46] Petrishchev V, Leonov S and Adamovich I V. 2014. Studies of nanosecond pulse surface ionization wave discharges over solid and liquid dielectric surfaces.Plasma Sources Sci. Technol.23, 065022.
[47] [47] Uzoma P C, Wang Q M, Zhang W Y, Gao N J, Li J W, Okonkwo P C, Liu F C and Han E H. 2021. Anti-bacterial, icephobic, and corrosion protection potentials of superhydrophobic nanodiamond composite coating.Colloids Surf.A630, 127532.
[48] [48] Ansari M A, Khan H M, Khan A A, Pal R and Cameotra S S. 2013. Antibacterial potential of Al2O3 nanoparticles against multidrug resistance strains ofStaphylococcus aureusisolated from skin exudates.J. Nanopart. Res.15, 1970.
[49] [49] Wan Y, Zhao Z H, Yu M Z, Ji Z B, Wang T, Cai Y K, Liu C and Liu Z Q. 2022. Osteogenic and antibacterial ability of micronano structures coated with ZnO on Ti-6Al-4V implant fabricated by two-step laser processing.J. Mater. Sci. Technol.131, 240–252.
[50] [50] Gudkov S V, Burmistrov D E, Smirnova V V, Semenova A A and Lisitsyn A B. 2022. A mini review of antibacterial properties of Al2O3 nanoparticles.Nanomaterials12, 2635.
[51] [51] Wang W, Song M S, Yang X N, Zhao J, Cole I S, Chen X B and Fan Y. 2020. Synergistic coating strategy combining photodynamic therapy and fluoride-free superhydrophobicity for eradicating bacterial adhesion and reinforcing corrosion protection.ACS Appl. Mater. Interfaces12, 46862–46873.
[52] [52] Wu X Y et al. 2024. Interfacial local activation strategy tailoring selective zinc deposition pattern for stable zinc anodes.CompositesB287, 111860.
[53] [53] Xiao X F, Cao G Y, Chen F X, Tang Y R, Liu X and Xu W L. 2015. Durable superhydrophobic wool fabrics coating with nanoscale Al2O3 layer by atomic layer deposition.Appl. Surf. Sci.349, 876–879.
[54] [54] Zhang X Q, Yuan W, Yang Y, Chen Y, Tang Z H, Wang C, Yuan Y H, Ye Y T, Wu Y P and Tang Y. 2020. Immobilizing polysulfide byin situtopochemical oxidation derivative TiC@carbon-included TiO2 core-shell sulfur hosts for advanced lithium-sulfur batteries.Small16, e2005998.
[55] [55] Zhang X Q, Yuan W, Huang H L, Xu M, Chen Y, Zhao B T, Ding X R, Zhang S W, Tang Y and Lu L S. 2023. Rational design and low-cost fabrication of multifunctional separators enabling high sulfur utilization in long-life lithium-sulfur batteries.Int. J. Extrem. Manuf.5, 015501.
[56] [56] Wang L X, Yin K, Deng Q W, Huang Q Q and Arnusch C J. 2024. Multiscale hybrid-structured femtosecond laserinduced graphene with outstanding photo-electro-thermal effects for all-day anti-icing/deicing.Carbon219, 118824.
[57] [57] Wu X Y et al. 2024. Stress prerelease-driven dendrite-free growth mechanism to stabilize Zn anodes.Adv. Energy Mater.14, 2304204.
[58] [58] Wu T N, Yin K, Pei J Q, He Y C, Duan J A and Arnusch C J. 2024. Femtosecond laser-textured superhydrophilic coral-like structures spread AgNWs enable strong thermal camouflage and anti-counterfeiting.Appl. Phys. Lett.124, 161602.
[59] [59] Shuai C J, Shi X X, Yang F, Tian H F and Feng P. 2024. Oxygen vacancy boosting Fenton reaction in bone scaffold towards fighting bacterial infection.Int. J. Extrem. Manuf.6, 015101.
[60] [60] Meng X Q et al. 2021. High-performance self-cascade pyrite nanozymes for apoptosis-ferroptosis synergistic tumor therapy.ACS Nano15, 5735–5751.
Get Citation
Copy Citation Text
Li Kaikai, Xie Yingxi, Shen Pengyu, Yu Min, Gao Jiao, Bi Junming, Wang Long, Lu Longsheng. Micro/nano-manufacturing of bioinspired blood-repellent surfaces for extreme application in surgical electrodes[J]. International Journal of Extreme Manufacturing, 2025, 7(4): 45503
Category:
Received: Sep. 26, 2024
Accepted: Sep. 9, 2025
Published Online: Sep. 9, 2025
The Author Email: