Laser Technology, Volume. 43, Issue 5, 660(2019)

Continuous pedestrian detection by means of regional convolutional neural network based on historical information

LU Baohong and SONG Xuehua*
Author Affiliations
  • [in Chinese]
  • show less
    References(21)

    [1] [1] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. Lake Tahoe, Nevada, USA: Curran Associates Inc, 2012: 1097-1105.

    [2] [2] FENG W, WANG Y D, ZHANG L. Weighted joint dimensionality extraction and classification recognition algorithm [J]. Laser Technology, 2018, 42(5): 666-672(in Chinese).

    [3] [3] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: Common objects in context[C]//European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014: 740-755.

    [4] [4] EVERINGHAM M, Van GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (voc) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338.

    [5] [5] RUSSAKOVSKY O, DENG J, SU H, et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252.

    [6] [6] BENENSON R, OMRAN M, HOSANG J, et al. Ten years of pedestrian detection, what have we learned[C]//European Conference on Computer Vision. Zurich, Switzerland : Springer, 2014: 613-627.

    [7] [7] ZHANG S, BENENSON R, OMRAN M, et al. How far are we from solving pedestrian detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2016: 1259-1267.

    [8] [8] COSTEA A D, NEDEVSCHI S. Semantic channels for fast pedestrian detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE,2016: 2360-2368.

    [9] [9] HOSANG J, OMRAN M, BENENSON R, et al. Taking a deeper look at pedestrians[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2015: 4073-4082.

    [10] [10] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2014: 580-587.

    [11] [11] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.

    [12] [12] ZHANG L, LIN L, LIANG X, et al. Is faster R-CNN doing well for pedestrian detection[C]//European Conference on computer Vision. Amsterdam, Netherlands: Springer, 2016: 443-457.

    [13] [13] ZHANG Sh Sh, BENENSON R, SCHIELE B. Citypersons: A diverse dataset for pedestrian detection[C]//The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE, 2017: 3.

    [14] [14] LI J, LIANG X, SHEN S M, et al. Scale-aware fast R-CNN for pedestrian detection[J]. IEEE Transactions on Multimedia, 2018, 20(4): 985-996.

    [15] [15] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. New York, USA: IEEE, 2015: 1440-1448.

    [16] [16] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-V4, inception-resnet and the impact of residual connections on learning[J].Computer Vison and Pattern Recognition, 2016, 23(2):07261.

    [17] [17] DOLLR P, WOJEK C, SCHIELE B, et al. Pedestrian detection: A benchmark[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2009. New York, USA: IEEE, 2009: 304-311.

    [18] [18] GUADARRAMA S. Tensorflow-slim image classification model library[OL].(2018-07-05)[2018-12-31].https://github.com/tensorflow/models/tree/master/research/slim.

    [19] [19] UIJLINGS J R R, van de SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154-171.

    [20] [20] ZITNICK C L, DOLLR P. Edge boxes: Locating object proposals from edges[C]//European Conference on Computer Vision. Zurich, Switzerland : Springer, 2014: 391-405.

    [21] [21] KONG T, YAO A, CHEN Y, et al. Hypernet: Towards accurate region proposal generation and joint object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2016: 845-853.

    Tools

    Get Citation

    Copy Citation Text

    LU Baohong, SONG Xuehua. Continuous pedestrian detection by means of regional convolutional neural network based on historical information[J]. Laser Technology, 2019, 43(5): 660

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 5, 2018

    Accepted: --

    Published Online: Sep. 9, 2019

    The Author Email: SONG Xuehua (songxh@ujs.edu.cn)

    DOI:10.7510/jgjs.issn.1001-3806.2019.05.014

    Topics