Chinese Journal of Lasers, Volume. 43, Issue 3, 312001(2016)
A Correlating Hartmann-Shack Wavefront Processor Using Multi-Core CPU
[1] [1] Jiang Wenhan. Adaptive optical technology[J]. Chinese Journal of Nature, 2005, 28(1): 7-13.
[2] [2] Xiao Fei, Dai Yun, Zhao Junlei, et al.. High-resolution retinal imaging system with dual deformable mirrors[J]. Acta Optica Sinica, 2015, 35(5): 0501004.
[4] [4] Wang Yanping, Wang Qianqian, Ma Chong. Study on Hartmann wavefront analyzer calibration method[J]. Chinese J Lasers, 2015, 42 (1): 0108003.
[7] [7] Wang Zhui. Research of Real-Time Wavefront Processing Algorithms Based on Multi-Core DSP[D]. Beijing: University of Chinese Academy of Sciences, 2014.
[8] [8] Mauch S, Reger J, Reinlein C, et al.. FPGA-accelerated adaptive optics wavefront control[C]. SPIE, 2014, 8978: 897802.
[9] [9] Reinig M, Gavel D, Ardestani E, et al.. Real-time control for Keck observatory next-generation adaptive optics[C]. SPIE, 2010, 7736: 77363J.
[10] [10] Truong T N, Bouchez A H, Burrusset R S, et al.. Design and implementation of the PALM-3000 real-time control system[C]. SPIE, 2012, 8447: 84472F.
[11] [11] Yang Haifeng. High Speed Data Transmission, Signal and Power Integrity Technologies for Adaptive Optics Wavefront Processor[D]. Beijing: University of Chinese Academy of Sciences, 2014.
[12] [12] Basden A, Geng D, Myers R, et al.. Durham adaptive optics real-time controller[J]. Applied Optics, 2010, 49(32): 6354-6363.
[13] [13] Choi S, Nah J, Moon Y J, et al.. Development of a correlation tracker system for the new solar telescope[C]. SPIE, 2008, 7015: 138-146.
[14] [14] Berkefeld T, Soltau D, Schmidt D, et al.. Adaptive optics development at the German solar telescopes[J]. Applied Optics, 2010, 49(31): G155-G166.
[15] [15] Chen S Q, Zhao E Y, Xu W, et al.. A compact multi-core CPU based adaptive optics real-time controller[C]. SPIE, 2014, 9280: 928012.
[16] [16] Yang Jingwen, Chen Shanqiu, Rao Changhui, et al.. Processing unit of a correlation tracking system based on an RTAI real-time operating system[J]. Astronomical Research & Technology, 2011, 8(3): 285-292.
[17] [17] Rodríguez-Ramos L F, Chulani H, Martín Y, et al.. FPGA-based real time controller for high order correction in EDIFISE[C]. SPIE, 2012, 8447: 84472R.
[18] [18] Li Jing, Gong Yan, Hu Xinrong, et al.. A high-precision centroid detecting method for Hartmann-Shack wavefront sensor[J]. Chinese J Lasers, 2014, 41(3): 0316002.
[19] [19] Shen Tingting. Real-Time Wavefront Processor for Solar Adaptive Optical System Based on Cross Correlation Coefficient Algorithm[D]. Beijing: University of Chinese Academy of Sciences, 2015.
[20] [20] Tang Guanqun. Analysis and comparison of several calculation methods of beam spot center[J]. Journal of Beijing Institute of Machinery, 2009, 24(1): 61-64.
[21] [21] Xie Weida, Zhou Yuheng, Kou Ruolan. An improved fast normalized cross correlation algorithm[J]. Journal of Tongji University, 2011, 39(8): 1233-1237.
[22] [22] Wu Qiang, Ren Lin, Zhang Jie, et al.. Fast algorithm of normalized cross correlation and optimized implementation on DSP[J]. Journal of Electronic Measurement and Instrument, 2011, 25(6): 495-499.
[23] [23] Lewis J P. Fast normalized cross correlation[C]. Proceedings of Vision Interface, 1995: 120-123.
Get Citation
Copy Citation Text
Chen Bingqian, He Jieling, Wang Caixia, Wei Ling. A Correlating Hartmann-Shack Wavefront Processor Using Multi-Core CPU[J]. Chinese Journal of Lasers, 2016, 43(3): 312001
Category:
Received: Oct. 26, 2015
Accepted: --
Published Online: Mar. 4, 2016
The Author Email: Bingqian Chen (bingqian_chen@163.com)