Journal of the Chinese Ceramic Society, Volume. 52, Issue 6, 1884(2024)

Recent Progress on Hydrogen Electrode Materials for Solid Oxide Electrolysis Cell

LI Cheng, ZHOU Lu, LIU Bo, LIU Yanya, TANG Yujie, YAN Dong, LI Jian, and JIA Lichao*
Author Affiliations
  • [in Chinese]
  • show less
    References(118)

    [1] [1] LI Desheng, GUO Hu, HU Yingzhen, et al. J Chin Ceram Soc, 2023, 51(10): 2712-2726.

    [2] [2] CHEN Zhiyi, YUE Zhongwei, AI Na, et al. J Ceram, 2022, 43(5): 825-838.

    [3] [3] QIU P, LI C, LIU B, et al. Materials of solid oxide electrolysis cells for H2O and CO2 electrolysis: A review[J]. J Adv Ceram, 2023, 12(8): 1463-1510.

    [4] [4] LIU Shaoming, DENG Zhanfeng, XU Guizhi, et al. Chin J Eng, 2020, 42(3): 278-288.

    [5] [5] DONG Yulong, LI Zongbao, WANG Ao, et al. Chin J Eng, 2022, 44(6): 1014-1019.

    [6] [6] DENG Y T, WANG D, CHENG J L, et al. A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide[J]. Chin Chemical Lett, 2023: 109141.

    [7] [7] LI P Z, YANG W, TIAN C J, et al. Electrochemical performance of La2NiO4+δ-Ce0.55La0.45O2?δ as a promising bifunctional oxygen electrode for reversible solid oxide cells[J]. J Adv Ceram, 2021, 10(2): 328-337.

    [8] [8] ZHANG Yang, ZHU Liangzhu, GUAN Wanbing, et al. J Ceram, 2022, 43(5): 816-824.

    [9] [9] CHEN Ting, LIU Kui, ZHENG Guozhu, et al. J Chin Ceram Soc, 2023, 51(10): 2727-2738.

    [10] [10] ZHANG X X, LIU B, YANG Y L, et al. Advances in component and operation optimization of solid oxide electrolysis cell[J]. Chin Chemical Lett, 2023, 34(5): 108035.

    [11] [11] JENSEN S H, LARSEN P H, MOGENSEN M. Hydrogen and synthetic fuel production from renewable energy sources[J]. Int J Hydrog Energy, 2007, 32(15): 3253-3257.

    [12] [12] MIZUSAKI J, TAGAWA H, SAITO T, et al. Kinetic studies of the reaction at the nickel pattern electrode on YSZ in H2-H2O atmospheres[J]. Solid State Ion, 1994(70-71): 52-58.

    [13] [13] BIEBERLE A. State-space modeling of the anodic SOFC system Ni, H2-H2O|YSZ[J]. Solid State Ion, 2002, 146(1-2): 23-41.

    [14] [14] MOGENSEN M. The kinetics of hydrogen oxidation on a Ni-YSZ SOFC electrode at 1000 ℃[J]. Proc Vol, 1993, 4(1): 484-493.

    [15] [15] DE BOER B. SOFC anode: Hydrogen oxidation at porous nickel and nickel/yttria-stabilised zirconia cermet electrodes[D]. Twente, the Netherlands: University of TwenteSwiss Federal Institute of Technology, 1998.

    [16] [16] BESSLER W, WARNATZ J, GOODWIN D. The influence of equilibrium potential on the hydrogen oxidation kinetics of SOFC anodes[J]. Solid State Ion, 2007, 177(39-40): 3371-3383.

    [17] [17] VOGLER M, BIEBERLE-HU?TTER A, GAUCKLER L, et al. Modelling study of surface reactions, diffusion, and spillover at a Ni/YSZ patterned anode[J]. J Electrochem Soc, 2009, 156(5): B663.

    [18] [18] LUO Y, LI W Y, SHI Y X, et al. Reversible H2/H2O electrochemical conversion mechanisms on the patterned nickel electrodes[J]. Int J Hydrog Energy, 2017, 42(40): 25130-25142.

    [19] [19] PAN W P, CHEN K F, AI N, et al. Mechanism and kinetics of Ni-Y2O3-ZrO2 hydrogen electrode for water electrolysis reactions in solid oxide electrolysis cells[J]. J Electrochem Soc, 2015, 163(2): F106-F114.

    [20] [20] ARUNA S T, MUTHURAMAN M, PATIL K C. Synthesis and properties of Ni-YSZ cermet: Anode material for solid oxide fuel cells[J]. Solid State Ion, 1998, 111(1-2): 45-51.

    [21] [21] YANG Y R, TONG X F, HAUCH A, et al. Study of solid oxide electrolysis cells operated in potentiostatic mode: Effect of operating temperature on durability[J]. Chem Eng J, 2021, 417: 129260.

    [22] [22] PARK B K, SCIPIONI R, ZHANG Q, et al. Tuning electrochemical and transport processes to achieve extreme performance and efficiency in solid oxide cells[J]. J Mater Chem A, 2020, 8(23): 11687-11694.

    [23] [23] LAY-GRINDLER E, LAURENCIN J, VILLANOVA J, et al. Degradation study by 3D reconstruction of a nickel-yttria stabilized zirconia cathode after high temperature steam electrolysis operation[J]. J Power Sources, 2014, 269: 927-936.

    [24] [24] CHOI M B, SINGH B, WACHSMAN E D, et al. Performance of La0.1Sr0.9Co0.8Fe0.2O3 and La0.1Sr0.9Co0.8Fe0.2O3-Ce0.9Gd0.1O2 oxygen electrodes with Ce0.9Gd0.1O2 barrier layer in reversible solid oxide fuel cells[J]. J Power Sources, 2013, 239: 361-373.

    [25] [25] KIM K J, THAHEEM I, JEONG I, et al. Nanostructured spinel Mn1.3Co1.3Cu0.4O4 as a bifunctional electrocatalyst for high-performance solid oxide electrochemical cells at intermediate temperatures[J]. J Power Sources, 2022, 539: 231611.

    [26] [26] KHAN M S, XU X Y, LI M R, et al. Evaluation of SrCo0.8Nb0.2O3-δ, SrCo0.8Ta0.2O3-δ and SrCo0.8Nb0.1Ta0.1O3-δ as air electrode materials for solid oxide electrolysis and reversible solid oxide cells[J]. Electrochim Acta, 2019, 321: 134654.

    [27] [27] GóMEZ S Y, HOTZA D. Current developments in reversible solid oxide fuel cells[J]. Renew Sustain Energy Rev, 2016, 61: 155-174.

    [28] [28] KIM-LOHSOONTORN P, LAOSIRIPOJANA N, BAE J. Performance of solid oxide electrolysis cell having bi-layered electrolyte during steam electrolysis and carbon dioxide electrolysis[J]. Curr Appl Phys, 2011, 11(1): S223-S228.

    [29] [29] SCHEFOLD J, BRISSE A, POEPKE H. 23, 000 hsteam electrolysis with an electrolyte supported solid oxide cell[J]. Int J Hydrog Energy, 2017, 42(19): 13415-13426.

    [30] [30] IOANNIDOU E, NEOFYTIDIS C, SYGELLOU L, et al. Au-doped Ni/GDC as an improved cathode electrocatalyst for H2O electrolysis in SOECs[J]. Appl Catal B Environ, 2018, 236: 253-264.

    [31] [31] ZARAVELIS F, SYGELLOU L, SOUVALIOTI A, et al. Transition metals in Ni/GDC for the reversible solid oxide cell operation: Optimization of the Mo-Au-Ni synergy and further enhancement via substitution of Mo with Fe[J]. Electrochim Acta, 2023, 453: 142343.

    [32] [32] GAN T, FAN X Q, LIU Y, et al. A highly active Ni/Ce0.8Sm0.2O1.9 anode catalyst with a three-dimensionally ordered macroporous structure for solid oxide fuel cells[J]. J Mater Chem A, 2020, 8(16): 7792-7800.

    [33] [33] LAI K-YMANTHIRAM A. Self-Regenerating Co-Fe nanoparticles on perovskite oxides as a hydrocarbon fuel oxidation catalyst in solid oxide fuel cells[J]. Chem Mater, 2018, 30(8): 25152525.

    [34] [34] CHOI S, SENGODAN S, PARK S, et al. A robust symmetrical electrode with layered perovskite structure for direct hydrocarbon solid oxide fuel cells: PrBa0.8Ca0.2Mn2O5+δ[J]. J Mater Chem A, 2016, 4(5): 17471753.

    [35] [35] XU L, YIN Y-M, ZHOU N, et al. Sulfur tolerant redox stable layered perovskite SrLaFeO4?δ as anode for solid oxide fuel cells[J]. Electrochemistry Communications, 2017, 76: 5154.

    [36] [36] LV H F, LIN L, ZHANG X M, et al. Promoting exsolution of RuFe alloy nanoparticles on Sr2Fe1.4Ru0.1Mo0.5O6-δ via repeated redox manipulations for CO2 electrolysis[J]. Nat Commun, 2021, 12(1): 5665.

    [37] [37] QIU P, YANG X, WANG W H, et al. Redox-reversible electrode material for direct hydrocarbon solid oxide fuel cells[J]. ACS Appl Mater Interfaces, 2020, 12(12): 13988-13995.

    [38] [38] SAMMELLS A, COOK R, WHITE J, et al. Rational selection of advanced solid electrolytes for intermediate temperature fuel cells[J]. Solid State Ion, 1992, 52(1-3): 111-123.

    [39] [39] YANG X D, IRVINE J T S. (La0.75Sr0.25)0.95Mn0.5Cr0.5O3 as the cathode of solid oxide electrolysis cells for high temperature hydrogen production from steam[J]. J Mater Chem, 2008, 18(20): 2349-2354.

    [40] [40] MAIDE M, PAISTE P, M?LLER P, et al. Influence of A- and B-site modifications of (La1-xSrx)yCr0.5-zMn0.5-wNiz+wO3-δ on electrochemical impedance characteristics of reversible solid oxide cell[J]. J Electrochem Soc, 2019, 166(15):1148-1156.

    [41] [41] CHEN S G, XIE K, DONG D H, et al. A composite cathode based on scandium-doped chromate for direct high-temperature steam electrolysis in a symmetric solid oxide electrolyzer[J]. J Power Sources, 2015, 274: 718-729.

    [42] [42] JIN C, YANG C H, ZHAO F, et al. La0.75Sr0.25Cr0.5Mn0.5O3 as hydrogen electrode for solid oxide electrolysis cells[J]. Int J Hydrog Energy, 2011, 36(5): 3340-3346.

    [43] [43] MA Z, LI Y Y, ZHENG Y F, et al. La0.75Sr0.25Cr0.5Mn0.5O3 as cathode for electrolysis and co-electrolysis of CO2 and H2O in solid oxide electrolysis cell[J]. Ceram Int, 2021, 47(16): 23350-23361.

    [44] [44] DANILOVIC N, VINCENT A, LUO J L, et al. Correlation of fuel cell anode electrocatalytic and ex situ catalytic activity of perovskites La0.75Sr0.25Cr0.5X0.5O3-δ (X = Ti, Mn, Fe, Co)[J]. Chem Mater, 2010, 22(3): 957-965.

    [45] [45] LAY E, GAUTHIER G, DESSEMOND L. Preliminary studies of the new Ce-doped La/Sr chromo-manganite series as potential SOFC anode or SOEC cathode materials[J]. Solid State Ion, 2011, 189(1): 91-99.

    [46] [46] QI W T, ZHANG Y, CUI J W, et al. In-situ constructing NiO nanoplatelets network on La0.75Sr0.25Mn0.5Cr0.5O3 electrode with enhanced steam electrolysis[J]. Int J Hydrog Energy, 2017, 42(9): 5657-5666.

    [47] [47] XU S S, CHEN S G, LI M, et al. Composite cathode based on Fe-loaded LSCM for steam electrolysis in an oxide-ion-conducting solid oxide electrolyser[J]. J Power Sources, 2013, 239: 332-340.

    [48] [48] XING R M, WANG Y R, ZHU Y Q, et al. Co-electrolysis of steam and CO2 in a solid oxide electrolysis cell with La0.75Sr0.25Cr0.5Mn0.5O3-δ-Cu ceramic composite electrode[J]. J Power Sources, 2015, 274: 260-264.

    [49] [49] XU S S, DONG D H, WANG Y, et al. Perovskite chromates cathode with resolved and anchored nickel nano-particles for direct high-temperature steam electrolysis[J]. J Power Sources, 2014, 246: 346-355.

    [50] [50] XIE Yilin, KONG Jiangrong, PAN Di, et al. Chin J Rare Met, 2021, 45(11): 1343-1351.

    [51] [51] SU T L, LI Y H, YANG Y, et al. Effect of tungsten doping on strontium ferrite electrode for symmetrical solid oxide electrochemical cell[J]. Int J Hydrog Energy, 2020, 45(43): 23401-23410.

    [52] [52] TENG Z Y, XIAO Z R, YANG G M, et al. Efficient water splitting through solid oxide electrolysis cells with a new hydrogen electrode derived from A-site cation-deficient La0.4Sr0.55Co0.2Fe0.6Nb0.2O3-δ perovskite[J]. Mater Today Energy, 2020, 17: 100458.

    [53] [53] ZHANG S L, WANG H Q, YANG T R, et al. Advanced oxygen-electrode-supported solid oxide electrochemical cells with Sr(Ti, Fe)O3?δ-based fuel electrodes for electricity generation and hydrogen production[J]. J Mater Chem A, 2020, 8(48): 25867-25879.

    [54] [54] ALJABERI A D, IRVINE J T S. Ca-substituted, A-site deficient perovskite La0.2Sr0.7TiO3 as a potential anode material for SOFCs[J]. J Mater Chem A, 2013, 1(19): 5868-5874.

    [55] [55] FAN L Q, XIONG Y P, WANG Y W, et al. Performance of Gd0.2Ce0.8O1.9 infiltrated La0.2Sr0.8TiO3 nanofiber scaffolds as anodes for solid oxide fuel cells: Redox stability and effects of electrolytes[J]. J Power Sources, 2015, 294: 452-459.

    [56] [56] LI X, ZHAO H L, XU N S, et al. Electrical conduction behavior of La, Co Co-doped SrTiO3 perovskite as anode material for solid oxide fuel cells[J]. Int J Hydrog Energy, 2009, 34(15): 6407-6414.

    [57] [57] XIAO G L, NUANSAENG S, ZHANG L, et al. Enhanced reducibility and conductivity of Na/K-doped SrTi0.8Nb0.2O3[J]. J Mater Chem A, 2013, 1(35): 10546-10552.

    [58] [58] CANALES-VA?ZQUEZ J, RUIZ-MORALES J C, IRVINE J T S, et al. Sc-substituted oxygen excess titanates as fuel electrodes for SOFCs[J]. J Electrochem Soc, 2005, 152(7): A1458.

    [59] [59] YOON J S, LIM Y S, CHOI B H, et al. Catalytic activity of perovskite-type doped La0.08Sr0.92Ti1-xMxO3-δ (M=Mn, Fe, and Co) oxides for methane oxidation[J]. Int J Hydrog Energy, 2014, 39(15): 7955-7962.

    [60] [60] PAYDAR S, KORJUS O, MAIDE M, et al. Electrical properties of novel La0. 2Sr0.7-xCaxTi0.95Fe0.05O3-δ based fuel electrode for solid oxide cell[J]. ECS Trans, 2021, 103(1): 1971-1979.

    [61] [61] ZHANG J, XIE K, GAN Y, et al. Composite titanate cathode enhanced with in situ grown nickel nanocatalyst for direct steam electrolysis[J]. New J Chem, 2014, 38(8): 3434-3442.

    [62] [62] TSEKOURAS G, NEAGU D, IRVINE J T S. Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants[J]. Energy Environ Sci, 2013, 6(1): 256-266.

    [63] [63] ARRIVé C, DELAHAYE T, JOUBERT O, et al. Exsolution of nickel nanoparticles at the surface of a conducting titanate as potential hydrogen electrode material for solid oxide electrochemical cells[J]. J Power Sources, 2013, 223: 341-348.

    [64] [64] MYUNG J H, NEAGU D, MILLER D N, et al. Switching on electrocatalytic activity in solid oxide cells[J]. Nature, 2016, 537(7621): 528-531.

    [65] [65] MACíAS J, YAREMCHENKO A A, FRADE J R. Redox transitions in strontium vanadates: Electrical conductivity and dimensional changes[J]. J Alloys Compd, 2014, 601: 186-194.

    [66] [66] REY M J, DEHAUDT P, JOUBERT J C, et al. Preparation and structure of the compounds SrVO3 and Sr2VO4[J]. J Solid State Chem, 1990, 86(1): 101-108.

    [67] [67] MACíAS J, YAREMCHENKO A A, FRADE J R. Enhanced stability of perovskite-like SrVO3-based anode materials by donor-type substitutions[J]. J Mater Chem A, 2016, 4(26): 10186-10194.

    [68] [68] LI Y X, WU G J, RUAN C, et al. Composite cathode based on doped vanadate enhanced with loaded metal nanoparticles for steam electrolysis[J]. J Power Sources, 2014, 253: 349-359.

    [69] [69] HUANG Y H, DASS R I, XING Z L, et al. Double perovskites as anode materials for solid-oxide fuel cells[J]. Science, 2006, 312(5771): 254-257.

    [70] [70] TOMKIEWICZ A C, TAMIMI M A, HUQ A, et al. Structural analysis of PrBaMn2O5+δ under SOFC anode conditions by in situ neutron powder diffraction[J]. J Power Sources, 2016, 330: 240-245.

    [71] [71] SENGODAN S, CHOI S, JUN A, et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells[J]. Nat Mater, 2015, 14(2): 205-209.

    [72] [72] JUN A, KIM J, SHIN J, et al. Achieving high efficiency and eliminating degradation in solid oxide electrochemical cells using high oxygen-capacity perovskite[J]. Angew Chem Int Ed Engl, 2016, 55(40): 12512-12515.

    [73] [73] KAN W H, CHEN M, BAE J S, et al. Determination of Fe oxidation states in the B-site ordered perovskite-type Ba2Ca0.67Fe0.33NbO6?δ at the surface (nano-scale) and bulk by variable temperature XPS and TGA and their impact on electrochemical catalysis[J]. J Mater Chem A, 2014, 2(23): 8736-8741.

    [74] [74] BAHOUT M, MANAGUTTI P B, DORCET V, et al. In situ exsolution of Ni particles on the PrBaMn2O5 SOFC electrode material monitored by high temperature neutron powder diffraction under hydrogen[J]. J Mater Chem A, 2020, 8(7): 3590-3597.

    [75] [75] ZHOU J, XU L Y, DING C W, et al. Layered perovskite (PrBa)0.95(Fe0.9Mo0.1)2O5+δ as electrode materials for high-performing symmetrical solid oxide electrolysis cells[J]. Mater Lett, 2019, 257: 126758.

    [76] [76] LU C L, NIU B B, YI W D, et al. Efficient symmetrical electrodes of PrBaFe2-xCoxO5+δ (x=0, 0.2, 0.4) for solid oxide fuel cells and solid oxide electrolysis cells[J]. Electrochim Acta, 2020, 358: 136916.

    [77] [77] LIU Q, DONG X H, XIAO G L, et al. A novel electrode material for symmetrical SOFCs[J]. Adv Mater, 2010, 22(48): 5478-5482.

    [78] [78] XIAO G L, LIU Q, ZHAO F, et al. Sr2Fe1.5Mo0.5O6 as cathodes for intermediate-temperature solid oxide fuel cells with La0.8Sr0.2Ga0.87Mg0.13O3 electrolyte[J]. J Electrochem Soc, 2011, 158(5): B455.

    [79] [79] HE B B, ZHAO L, SONG S X, et al. Sr2Fe1.5Mo0.5O6-δ-Sm0.2Ce0.8O1.9 composite anodes for intermediate-temperature solid oxide fuel cells[J]. J Electrochem Soc, 2012, 159(5): 619-626.

    [80] [80] VASALA S, LEHTIM?KI M, HUANG Y H, et al. Degree of order and redox balance in B-site ordered double-perovskite oxides, Sr2MMoO6-δ (M=Mg, Mn, Fe, Co, Ni, Zn)[J]. J Solid State Chem, 2010, 183(5): 1007-1012.

    [81] [81] LIU Q, YANG C H, DONG X H, et al. Perovskite Sr2Fe1.5Mo0.5O6-δ as electrode materials for symmetrical solid oxide electrolysis cells[J]. Int J Hydrog Energy, 2010, 35(19): 10039-10044.

    [82] [82] XI X A, LIU J W, LUO W Z, et al. Unravelingthe enhanced kinetics of Sr2Fe1+xMo1-xO6-δ electrocatalysts for high-performance solid oxide cells[J]. Adv Energy Mater, 2021, 11(48): 2102845.

    [83] [83] XU Z Q, HU X Y, WAN Y H, et al. Electrochemical performance and anode reaction process for Ca doped Sr2Fe15Mo0.5O6-δ as electrodes for symmetrical solid oxide fuel cells[J]. Electrochim Acta, 2020, 341: 136067.

    [84] [84] LI C, DENG Y T, YANG L P, et al. An active and stable hydrogen electrode of solid oxide cells with exsolved Fe-Co-Ni nanoparticles from Sr2FeCo0.2Ni0.2Mo0.6O6-δ double-perovskite[J]. Adv Powder Mater, 2023, 2(4): 100133.

    [85] [85] LI Y H, LI Y, WAN Y H, et al. Perovskite oxyfluoride electrode enabling direct electrolyzing carbon dioxide with excellent electrochemical performances[J]. Adv Energy Mater, 2019, 9(3): 1803156.

    [86] [86] LIU T, LIU H, ZHANG X Y, et al. A robust solid oxide electrolyzer for highly efficient electrochemical reforming of methane and steam[J]. J Mater Chem A, 2019, 7(22): 13550-13558.

    [87] [87] WANG Y, LIU T, LI M, et al. Exsolved Fe-Ni nano-particles from Sr2Fe1.3Ni0.2Mo0.5O6 perovskite oxide as a cathode for solid oxide steam electrolysis cells[J]. J Mater Chem A, 2016, 4(37): 14163-14169.

    [88] [88] LIU T, ZHAO Y Q, ZHANG X Y, et al. Robust redox-reversible perovskite type steam electrolyser electrode decorated with in situ exsolved metallic nanoparticles[J]. J Mater Chem A, 2020, 8(2): 582-591.

    [89] [89] ZHANG T H, ZHAO Y Q, ZHANG X Y, et al. Thermal stability of an in situ exsolved metallic nanoparticle structured perovskite type hydrogen electrode for solid oxide cells[J]. ACS Sustainable Chem Eng, 2019, 7(21): 17834-17844.

    [90] [90] YANG Y R, WANG Y H, YANG Z B, et al. A highly active and durable electrode with in situ exsolved Co nanoparticles for solid oxide electrolysis cells[J]. J Power Sources, 2020, 478: 229082.

    [91] [91] KAMLUNGSUA K, SU P C. Moisture-dependent electrochemical characterization of Ba0.2Sr1.8Fe1.5Mo0.5O6-δ as the fuel electrode for solid oxide electrolysis cells (SOECs)[J]. Electrochim Acta, 2020, 355: 136670.

    [92] [92] GE B, MA J T, AI D S, et al. Sr2FeNbO6 applied in solid oxide electrolysis cell as the hydrogen electrode: Kinetic studies by comparison with Ni-YSZ[J]. Electrochim Acta, 2015, 151: 437-446.

    [93] [93] JIANG H G, LU Z M, QIAN B, et al. Bi-doped La1.5Sr0.5Ni0.5Mn0.5O4+δ as an efficient air electrode material for SOEC[J]. Int J Hydrog Energy, 2021, 46(73): 36037-36045.

    [94] [94] LI Z F, SHAN P K, TANG W, et al. Enhancing the catalytic activity and stability of the Pr2NiO4+δ Ruddlesden-Popper perovskite air electrode for high-temperature steam electrolysis with Barium doping[J]. J Alloys Compd, 2023, 932: 167646.

    [95] [95] FU L, ZHOU J, YANG J M, et al. Exsolution of Cu nanoparticles in (LaSr)0.9Fe0.9Cu0.1O4 Ruddlesden-Popper oxide as symmetrical electrode for solid oxide cells[J]. Appl Surf Sci, 2020, 511: 145525.

    [96] [96] WANG X, YANG Z B, WANG H R, et al. La0.6Sr0.4Fe0.8Ni0.2O3-δ perovskite with in situ exsolved Ni-Fe nanoparticles as high activity catalyst for symmetric solid oxide electrolysis cells[J]. Mater Res Bull, 2022, 156: 111984.

    [97] [97] ZHANG X Y, TONG Y W, LIU T, et al. Robust Ruddlesden-Popper phase Sr3Fe1.3Mo0.5Ni0.2O7-δ decorated with in situ exsolved Ni nanoparticles as an efficient anode for hydrocarbon fueled solid oxide fuel cells[J]. SusMat, 2022, 2(4): 487-501.

    [98] [98] KIM H, LIM C, KWON O, et al. Unveiling the key factor for the phase reconstruction and exsolved metallic particle distribution in perovskites[J]. Nat Commun, 2021, 12(1): 6814.

    [99] [99] YANG Y, WU Y J, BAO H, et al. An efficient and prospective self-assembled hybrid electrocatalyst for symmetrical and reversible solid oxide cells[J]. Electrochim Acta, 2020, 362: 137171.

    [100] [100] YANG Z, XIA G, LI X, et al. (Mn, Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications[J]. Int J Hydrog Energy, 2007, 32(16): 3648-3654.

    [101] [101] STEFAN E, IRVINE J T S. Synthesis and characterization of chromium spinels as potential electrode support materials for intermediate temperature solid oxide fuel cells[J]. J Mater Sci, 2011, 46(22): 7191-7197.

    [102] [102] WANG W Y, GAN L Z, LEMMON J P, et al. Enhanced carbon dioxide electrolysis at redox manipulated interfaces[J]. Nat Commun, 2019, 10: 1550.

    [103] [103] GAN L Z, YE L T, RUAN C, et al. Redox-reversible iron orthovanadate cathode for solid oxide steam electrolyzer[J]. Adv Sci, 2015, 3(2): 1500186.

    [104] [104] DUAN N Q, GAO M R, HUA B, et al. Exploring Ni(Mn1/3Cr2/3)2O4 spinel-based electrodes for solid oxide cells[J]. J Mater Chem A, 2020, 8(7): 3988-3998.

    [105] [105] SLATER P. Synthesis and electrical characterisation of the tetragonal tungsten bronze type phases, (Ba/Sr/Ca/La)0 6MxNb1-xO3-δ (M=Mg, Ni, Mn, Cr, Fe, In, Sn): Evaluation as potential anode materials for solid oxide fuel cells[J]. Solid State Ion, 1999, 124(1-2): 61-72.

    [106] [106] OSINKIN D A, KUZIN B L, BOGDANOVICH N M. Effect of oxygen activity and water partial pressure to degradation rate of Ni cermet electrode contacting Zr0.84Y0.16O1.92 electrolyte[J]. Russ J Electrochem, 2010, 46(1): 41-48.

    [107] [107] RORATO L, SHANG Y J, YANG S L, et al. Understanding the Ni migration in solid oxide cell: A coupled experimental and modeling approach[J]. J Electrochem Soc, 2023, 170(3): 034504.

    [108] [108] TIETZ F, SEBOLD D, BRISSE A, et al. Degradation phenomena in a solid oxide electrolysis cell after 9 000 h of operation[J]. J Power Sources, 2013, 223: 129-135.

    [109] [109] DASARI H P, PARK S-Y, KIM J, et al. Electrochemical characterization of Ni-yttria stabilized zirconia electrode for hydrogen production in solid oxide electrolysis cells[J]. J Power Sources, 2013, 240: 721-728.

    [110] [110] HAUCH A, EBBESEN S D, JENSEN S H, et al. Solid oxide electrolysis cells: Microstructure and degradation of the Ni/yttria-stabilized zirconia electrode[J]. J Electrochem Soc, 2008, 155(11): B1184.

    [111] [111] TRINI M, HAUCH A, DE ANGELIS S, et al. Comparison of microstructural evolution of fuel electrodes in solid oxide fuel cells and electrolysis cells[J]. J Power Sources, 2020, 450: 227599.

    [112] [112] TONG X F, HENDRIKSEN P V, HAUCH A, et al. An up-scalable, infiltration-based approach for improving the durability of Ni/YSZ electrodes for solid oxide cells[J]. J Electrochem Soc, 2020, 167(2): 024519.

    [113] [113] LI N Z, WANG M M, SHEN Q, et al. Reduced concentration polarization and enhanced steam throughput conversion with a solid oxide electrolysis cell supported on an electrode with optimized pore structure[J]. Int J Hydrog Energy, 2022, 47(51): 21673-21680.

    [114] [114] THE D, GRIESHAMMER S, SCHROEDER M, et al. Microstructural comparison of solid oxide electrolyser cells operated for 6 100 h and 9 000 h[J]. J Power Sources, 2015, 275: 901-911.

    [115] [115] HAUCH A, JENSEN S H, BILDE-SO?RENSEN J B, et al. Silica segregation in the Ni/YSZ electrode[J]. J Electrochem Soc, 2007, 154(7): A619.

    [116] [116] JEANMONOD G, DIETHELM S, VAN HERLE J. The effect of SO2 on the Ni-YSZ electrode of a solid oxide electrolyzer cell operated in co-electrolysis[J]. J Phys Energy, 2020, 2(3): 034002.

    [117] [117] HUA B, LI M, SUN Y F, et al. Grafting doped manganite into nickel anode enables efficient and durable energy conversions in biogas solid oxide fuel cells[J]. Appl Catal B Environ, 2017, 200: 174-181.

    [118] [118] BOLDRIN P, RUIZ-TREJO E, MERMELSTEIN J, et al. Strategies for carbon and sulfur tolerant solid oxide fuel cell materials, incorporating lessons from heterogeneous catalysis[J]. Chem Rev, 2016, 116(22): 13633-13684.

    Tools

    Get Citation

    Copy Citation Text

    LI Cheng, ZHOU Lu, LIU Bo, LIU Yanya, TANG Yujie, YAN Dong, LI Jian, JIA Lichao. Recent Progress on Hydrogen Electrode Materials for Solid Oxide Electrolysis Cell[J]. Journal of the Chinese Ceramic Society, 2024, 52(6): 1884

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Nov. 23, 2023

    Accepted: --

    Published Online: Aug. 26, 2024

    The Author Email: JIA Lichao (jialc@hust.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20230900

    Topics